Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 1, Pages 22–34
DOI: https://doi.org/10.33048/alglog.2019.58.102
(Mi al879)
 

Some periodic groups admitting a finite regular automorphism of even order

E. B. Durakov, A. I. Sozutov

Siberian Federal University, Krasnoyarsk
References:
Abstract: We study the structure of an infinite group with automorphism of order $2p$ where $p$ is an odd prime leaving only the identity element fixed.
Keywords: periodic group, Frobenius group, locally finite group, auto­morphism.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-04897_а
Supported by RFBR, project No. 15-01-04897_a.
Received: 27.11.2017
Revised: 07.05.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 1, Pages 15–22
DOI: https://doi.org/10.1007/s10469-019-09521-7
Bibliographic databases:
Document Type: Article
UDC: 512.544
Language: Russian
Citation: E. B. Durakov, A. I. Sozutov, “Some periodic groups admitting a finite regular automorphism of even order”, Algebra Logika, 58:1 (2019), 22–34; Algebra and Logic, 58:1 (2019), 15–22
Citation in format AMSBIB
\Bibitem{DurSoz19}
\by E.~B.~Durakov, A.~I.~Sozutov
\paper Some periodic groups admitting a finite regular automorphism of even order
\jour Algebra Logika
\yr 2019
\vol 58
\issue 1
\pages 22--34
\mathnet{http://mi.mathnet.ru/al879}
\crossref{https://doi.org/10.33048/alglog.2019.58.102}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 1
\pages 15--22
\crossref{https://doi.org/10.1007/s10469-019-09521-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470818800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067061732}
Linking options:
  • https://www.mathnet.ru/eng/al879
  • https://www.mathnet.ru/eng/al/v58/i1/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :72
    References:27
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024