Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 1, Pages 3–21
DOI: https://doi.org/10.33048/alglog.2019.58.101
(Mi al878)
 

This article is cited in 2 scientific papers (total in 2 papers)

Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras

V. Yu. Gubarevab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (272 kB) Citations (2)
References:
Abstract: Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (RBLie, preLie) and (RB$_\lambda$Lie, postLie) are PBW-pairs and that the variety of Lie Rota–Baxter algebras is not a Schreier variety.
Keywords: pre-Lie algebra, post-Lie algebra, Rota–Baxter algebra, uni­versal enveloping algebra, Lyndon–Shirshov word, PBW-pair of varieties, Schreier variety, partially commutative Lie algebra.
Funding agency Grant number
Russian Science Foundation 14-21-00065
Supported by Russian Science Foundation, project No. 14-21-00065.
Received: 13.09.2017
Revised: 07.05.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 1, Pages 1–14
DOI: https://doi.org/10.1007/s10469-019-09520-8
Bibliographic databases:
Document Type: Article
UDC: 512.579
Language: Russian
Citation: V. Yu. Gubarev, “Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras”, Algebra Logika, 58:1 (2019), 3–21; Algebra and Logic, 58:1 (2019), 1–14
Citation in format AMSBIB
\Bibitem{Gub19}
\by V.~Yu.~Gubarev
\paper Universal enveloping Lie Rota--Baxter algebras of pre-Lie and post-Lie algebras
\jour Algebra Logika
\yr 2019
\vol 58
\issue 1
\pages 3--21
\mathnet{http://mi.mathnet.ru/al878}
\crossref{https://doi.org/10.33048/alglog.2019.58.101}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 1
\pages 1--14
\crossref{https://doi.org/10.1007/s10469-019-09520-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470818800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066990849}
Linking options:
  • https://www.mathnet.ru/eng/al878
  • https://www.mathnet.ru/eng/al/v58/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :53
    References:31
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024