Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 6, Pages 733–748
DOI: https://doi.org/10.33048/alglog.2018.57.606
(Mi al876)
 

This article is cited in 9 scientific papers (total in 9 papers)

Divisible Rigid Groups. III. Homogeneity and Quantifier Elimination

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (237 kB) Citations (9)
References:
Abstract: A group $G$ is said to be rigid if it contains a normal series
$$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb{Z}[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb{Z}[G/G_i]$. Every rigid group is embedded in a divisible one.
THEOREM. Let $G$ be a divisible rigid group. Then the coincedence of $\exists$-types of same-length tuples of elements of the group $G$ implies that these tuples are conjugate via an authomorphism of $G$.
As corollaries we state that divisible rigid groups are strongly $\aleph_0$-homogeneous and that the theory of divisible $m$-rigid groups admits quantifier elimination down to a Boolean combination of $\exists$-formulas.
Keywords: rigid group, divisible group, strongly ℵ<sub>0</sub>-homogeneous group, quantifier elimination.
Received: 10.08.2017
Revised: 21.05.2018
English version:
Algebra and Logic, 2019, Volume 57, Issue 6, Pages 478–489
DOI: https://doi.org/10.1007/s10469-019-09518-2
Bibliographic databases:
Document Type: Article
UDC: 512.5:510.6
Language: Russian
Citation: N. S. Romanovskii, “Divisible Rigid Groups. III. Homogeneity and Quantifier Elimination”, Algebra Logika, 57:6 (2018), 733–748; Algebra and Logic, 57:6 (2019), 478–489
Citation in format AMSBIB
\Bibitem{Rom18}
\by N.~S.~Romanovskii
\paper Divisible Rigid Groups. III. Homogeneity and Quantifier Elimination
\jour Algebra Logika
\yr 2018
\vol 57
\issue 6
\pages 733--748
\mathnet{http://mi.mathnet.ru/al876}
\crossref{https://doi.org/10.33048/alglog.2018.57.606}
\transl
\jour Algebra and Logic
\yr 2019
\vol 57
\issue 6
\pages 478--489
\crossref{https://doi.org/10.1007/s10469-019-09518-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463584500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063814703}
Linking options:
  • https://www.mathnet.ru/eng/al876
  • https://www.mathnet.ru/eng/al/v57/i6/p733
    Cycle of papers
    This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Àëãåáðà è ëîãèêà Algebra and Logic
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :32
    References:56
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024