Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 6, Pages 662–683
DOI: https://doi.org/10.33048/alglog.2018.57.603
(Mi al873)
 

This article is cited in 14 scientific papers (total in 15 papers)

Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories

D. Yu. Emel'yanovab, B. Sh. Kulpeshovacd, S. V. Sudoplatovbea

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
b Novosibirsk State Technical University
c Kazakh-British Technical University
d International Information Technology University
e Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Algebras of distributions of binary isolating formulas over a type for quite $o$-minimal theories with nonmaximal number of countable models are described. It is proved that an isomorphism of these algebras for two $1$-types is characterized by the coincidence of convexity ranks and also by simultaneous satisfaction of isolation, quasirationality, or irrationality of those types. It is shown that for quite $o$-minimal theories with nonmaximum many countable models, every algebra of distributions of binary isolating formulas over a pair of nonweakly orthogonal types is a generalized commutative monoid.
Keywords: quite o-minimal theory, countable model, convexity rank, algebras of distributions of binary isolating formulas, generalized commutative monoid.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00531_а
Ministry of Education and Science of the Republic of Kazakhstan АР05132546
Siberian Branch of Russian Academy of Sciences 1.1.1, проект № 0314-2019-0002
Received: 05.04.2017
Revised: 16.01.2018
English version:
Algebra and Logic, 2019, Volume 57, Issue 6, Pages 429–444
DOI: https://doi.org/10.1007/s10469-019-09515-5
Bibliographic databases:
Document Type: Article
UDC: 510.67
Language: Russian
Citation: D. Yu. Emel'yanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories”, Algebra Logika, 57:6 (2018), 662–683; Algebra and Logic, 57:6 (2019), 429–444
Citation in format AMSBIB
\Bibitem{EmeKulSud18}
\by D.~Yu.~Emel'yanov, B.~Sh.~Kulpeshov, S.~V.~Sudoplatov
\paper Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories
\jour Algebra Logika
\yr 2018
\vol 57
\issue 6
\pages 662--683
\mathnet{http://mi.mathnet.ru/al873}
\crossref{https://doi.org/10.33048/alglog.2018.57.603}
\transl
\jour Algebra and Logic
\yr 2019
\vol 57
\issue 6
\pages 429--444
\crossref{https://doi.org/10.1007/s10469-019-09515-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463584500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063813692}
Linking options:
  • https://www.mathnet.ru/eng/al873
  • https://www.mathnet.ru/eng/al/v57/i6/p662
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :40
    References:48
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024