|
This article is cited in 1 scientific paper (total in 1 paper)
Universal functions and unbounded branching trees
A. N. Khisamievab a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
Abstract:
It is proved that a universal $\Sigma$-function exists in a hereditarily finite superstructure over an unbounded branching tree of finite height.
Keywords:
hereditarily finite superstructure, unbounded branching tree of finite height, universal $\Sigma$-function.
Received: 12.01.2017
Citation:
A. N. Khisamiev, “Universal functions and unbounded branching trees”, Algebra Logika, 57:4 (2018), 476–491; Algebra and Logic, 57:4 (2018), 309–319
Linking options:
https://www.mathnet.ru/eng/al860 https://www.mathnet.ru/eng/al/v57/i4/p476
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 27 | References: | 35 | First page: | 6 |
|