Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 4, Pages 476–491
DOI: https://doi.org/10.17377/alglog.2018.57.405
(Mi al860)
 

This article is cited in 1 scientific paper (total in 1 paper)

Universal functions and unbounded branching trees

A. N. Khisamievab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
Full-text PDF (182 kB) Citations (1)
References:
Abstract: It is proved that a universal $\Sigma$-function exists in a hereditarily finite superstructure over an unbounded branching tree of finite height.
Keywords: hereditarily finite superstructure, unbounded branching tree of finite height, universal $\Sigma$-function.
Received: 12.01.2017
English version:
Algebra and Logic, 2018, Volume 57, Issue 4, Pages 309–319
DOI: https://doi.org/10.1007/s10469-018-9502-9
Bibliographic databases:
Document Type: Article
UDC: 512.540+510.5
Language: Russian
Citation: A. N. Khisamiev, “Universal functions and unbounded branching trees”, Algebra Logika, 57:4 (2018), 476–491; Algebra and Logic, 57:4 (2018), 309–319
Citation in format AMSBIB
\Bibitem{Khi18}
\by A.~N.~Khisamiev
\paper Universal functions and unbounded branching trees
\jour Algebra Logika
\yr 2018
\vol 57
\issue 4
\pages 476--491
\mathnet{http://mi.mathnet.ru/al860}
\crossref{https://doi.org/10.17377/alglog.2018.57.405}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 4
\pages 309--319
\crossref{https://doi.org/10.1007/s10469-018-9502-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452074900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057068690}
Linking options:
  • https://www.mathnet.ru/eng/al860
  • https://www.mathnet.ru/eng/al/v57/i4/p476
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :27
    References:35
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024