Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 4, Pages 482–505 (Mi al86)  

This article is cited in 10 scientific papers (total in 10 papers)

Varieties of Associative Algebras Satisfying Engel Identities

O. B. Finogenova

Ural State University
References:
Abstract: A variety of associative algebras (rings) is said to be Engel if it satisfies an identity of the form $[\ldots[[x,y],y],\ldots,y]=0$. On the Zorn lemma, every non-Engel variety contains some just non-Engel variety, that is, a minimal (w.r.t. inclusion) element in the set of all non-Engel varieties. A list of such varieties for algebras over a field of characteristic 0 was made up by Yu. N. Mal'tsev. Here, we present a complete description of just non-Engel varieties both for the case of algebras over a field of positive characteristic and for the case of rings. This gives the answer to Question 3.53 in the Dniester Notebook.
Keywords: Engel identity, just non-Engel variety, variety of associative rings, associative algebra over a field.
Received: 22.04.2003
English version:
Algebra and Logic, 2004, Volume 43, Issue 4, Pages 271–284
DOI: https://doi.org/10.1023/B:ALLO.0000035118.51742.41
Bibliographic databases:
UDC: 512.552.4
Language: Russian
Citation: O. B. Finogenova, “Varieties of Associative Algebras Satisfying Engel Identities”, Algebra Logika, 43:4 (2004), 482–505; Algebra and Logic, 43:4 (2004), 271–284
Citation in format AMSBIB
\Bibitem{Fin04}
\by O.~B.~Finogenova
\paper Varieties of Associative Algebras Satisfying Engel Identities
\jour Algebra Logika
\yr 2004
\vol 43
\issue 4
\pages 482--505
\mathnet{http://mi.mathnet.ru/al86}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2105850}
\zmath{https://zbmath.org/?q=an:1065.16019}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 4
\pages 271--284
\crossref{https://doi.org/10.1023/B:ALLO.0000035118.51742.41}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249093859}
Linking options:
  • https://www.mathnet.ru/eng/al86
  • https://www.mathnet.ru/eng/al/v43/i4/p482
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :129
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024