Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 4, Pages 426–447
DOI: https://doi.org/10.17377/alglog.2018.57.402
(Mi al857)
 

This article is cited in 4 scientific papers (total in 4 papers)

Some absolute properties of $A$-computable numberings

S. A. Badaeva, A. A. Issakhovab

a Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Alma-Ata, 050038 Kazakhstan
b Kazkh-British Technical University, ul. Tole bi 59, Alma-Ata, 050000 Kazakhstan
Full-text PDF (231 kB) Citations (4)
References:
Abstract: For an arbitrary set $A$ of natural numbers, we prove the following statements: every finite family of $A$-computable sets containing a least element under inclusion has an $A$-computable universal numbering; every infinite $A$-computable family of total functions has (up to $A$-equivalence) either one $A$-computable Friedberg numbering or infinitely many such numberings; every $A$-computable family of total functions which contains a limit function has no $A$-computable universal numberings, even with respect to $A$-reducibility.
Keywords: $A$-computable numbering, $A$-computable Friedberg numbering, $A$-computable universal numbering, $A$-reducibility.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05132349
Supported by the Science Committee of the Republic of Kazakhstan, grant No. AP05132349.
Received: 11.02.2017
Revised: 29.01.2018
English version:
Algebra and Logic, 2018, Volume 57, Issue 4, Pages 275–288
DOI: https://doi.org/10.1007/s10469-018-9499-0
Bibliographic databases:
Document Type: Article
UDC: 510.54
Language: Russian
Citation: S. A. Badaev, A. A. Issakhov, “Some absolute properties of $A$-computable numberings”, Algebra Logika, 57:4 (2018), 426–447; Algebra and Logic, 57:4 (2018), 275–288
Citation in format AMSBIB
\Bibitem{BadIss18}
\by S.~A.~Badaev, A.~A.~Issakhov
\paper Some absolute properties of $A$-computable numberings
\jour Algebra Logika
\yr 2018
\vol 57
\issue 4
\pages 426--447
\mathnet{http://mi.mathnet.ru/al857}
\crossref{https://doi.org/10.17377/alglog.2018.57.402}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 4
\pages 275--288
\crossref{https://doi.org/10.1007/s10469-018-9499-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452074900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056814173}
Linking options:
  • https://www.mathnet.ru/eng/al857
  • https://www.mathnet.ru/eng/al/v57/i4/p426
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :64
    References:38
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024