Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 1, Pages 73–101
DOI: https://doi.org/10.17377/alglog.2018.57.105
(Mi al836)
 

This article is cited in 10 scientific papers (total in 10 papers)

Separability of Schur rings over Abelian $p$-groups

G. K. Ryabov

Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
References:
Abstract: A Schur ring (an $S$-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let $C_n$ be the cyclic group of order $n$. It is proved that all $S$-rings over groups $D=C_p\times C_{p^k}$, where $p\in\{2,3\}$ and $k\ge1$, are separable with respect to a class of $S$-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over $D$ and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to $|D|$.
Keywords: Cayley graphs, Cayley graph isomorphism problem, Cayley schemes, Schur rings, permutation groups.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-53007
Supported by RFBR, project No. 17-51-53007.
Received: 07.04.2017
Revised: 07.08.2017
English version:
Algebra and Logic, 2018, Volume 57, Issue 1, Pages 49–68
DOI: https://doi.org/10.1007/s10469-018-9478-5
Bibliographic databases:
Document Type: Article
UDC: 512.542.3+519.178
Language: Russian
Citation: G. K. Ryabov, “Separability of Schur rings over Abelian $p$-groups”, Algebra Logika, 57:1 (2018), 73–101; Algebra and Logic, 57:1 (2018), 49–68
Citation in format AMSBIB
\Bibitem{Rya18}
\by G.~K.~Ryabov
\paper Separability of Schur rings over Abelian $p$-groups
\jour Algebra Logika
\yr 2018
\vol 57
\issue 1
\pages 73--101
\mathnet{http://mi.mathnet.ru/al836}
\crossref{https://doi.org/10.17377/alglog.2018.57.105}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 1
\pages 49--68
\crossref{https://doi.org/10.1007/s10469-018-9478-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433237600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047108184}
Linking options:
  • https://www.mathnet.ru/eng/al836
  • https://www.mathnet.ru/eng/al/v57/i1/p73
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :33
    References:34
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024