Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2018, Volume 57, Number 1, Pages 43–56
DOI: https://doi.org/10.17377/alglog.2018.57.103
(Mi al834)
 

This article is cited in 12 scientific papers (total in 12 papers)

Divisible rigid groups. II. Stability, saturation, and elementary submodels

A. G. Myasnikova, N. S. Romanovskiibc

a Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken NJ 07030-5991, USA
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
c Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
References:
Abstract: A group $G$ is said to be rigid if it contains a normal series
$$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb Z[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb Z[G/G_i]$. Every rigid group is embedded in a divisible one.
Previously, it was stated that the theory $\mathfrak T_m$ of divisible $m$-rigid groups is complete. Here, it is proved that this theory is $\omega$-stable. Furthermore, we describe saturated models, study elementary submodels of an arbitrary model, and find a representation for a countable saturated model in the form of a limit group in the Fraïssé system of all finitely generated $m$-rigid groups. Also, it is proved that the theory $\mathfrak T_m$ admits quantifier elimination down to a Boolean combination of $\forall\exists$-formulas.
Keywords: divisible rigid group, theory, model, stability, saturation, $\forall\exists$-formula.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01485.
Supported by RFBR, project No. 15-01-01485.
Received: 10.08.2017
Revised: 19.12.2017
English version:
Algebra and Logic, 2018, Volume 57, Issue 1, Pages 29–38
DOI: https://doi.org/10.1007/s10469-018-9476-7
Bibliographic databases:
Document Type: Article
UDC: 512.5+510.6
Language: Russian
Citation: A. G. Myasnikov, N. S. Romanovskii, “Divisible rigid groups. II. Stability, saturation, and elementary submodels”, Algebra Logika, 57:1 (2018), 43–56; Algebra and Logic, 57:1 (2018), 29–38
Citation in format AMSBIB
\Bibitem{MyaRom18}
\by A.~G.~Myasnikov, N.~S.~Romanovskii
\paper Divisible rigid groups.~II. Stability, saturation, and elementary submodels
\jour Algebra Logika
\yr 2018
\vol 57
\issue 1
\pages 43--56
\mathnet{http://mi.mathnet.ru/al834}
\crossref{https://doi.org/10.17377/alglog.2018.57.103}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 1
\pages 29--38
\crossref{https://doi.org/10.1007/s10469-018-9476-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433237600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047136866}
Linking options:
  • https://www.mathnet.ru/eng/al834
  • https://www.mathnet.ru/eng/al/v57/i1/p43
    Cycle of papers
    This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :41
    References:34
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024