Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2017, Volume 56, Number 6, Pages 682–690
DOI: https://doi.org/10.17377/alglog.2017.56.603
(Mi al824)
 

This article is cited in 2 scientific papers (total in 2 papers)

Pronormality of Hall subgroups in their normal closure

E. P. Vdovinab, M. N. Nesterovab, D. O. Revinab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (152 kB) Citations (2)
References:
Abstract: It is known that for any set $\pi$ of prime numbers, the following assertions are equivalent:
(1) in any finite group, $\pi$-Hall subgroups are conjugate;
(2) in any finite group, $\pi$-Hall subgroups are pronormal.
It is proved that (1) and (2) are equivalent also to the following:
(3) in any finite group, $\pi$-Hall subgroups are pronormal in their normal closure.
Previously [Unsolved Problems in Group Theory, The Kourovka Notebook, 18th edn., Institute of Mathematics SO RAN, Novosibirsk (2014), Quest. 18.32], the question was posed whether it is true that in a finite group, $\pi$-Hall subgroups are always pronormal in their normal closure. Recently, M. N. Nesterov [Sib. El. Mat. Izv., 12 (2015), 1032–1038] proved that assertion (3) and assertions (1) and (2) are equivalent for any finite set $\pi$. The fact that there exist examples of finite sets $\pi$ and finite groups $G$ such that $G$ contains more than one conjugacy class of $\pi$-Hall subgroups gives a negative answer to the question mentioned. Our main result shows that the requirement of finiteness for $\pi$ is unessential for (1), (2), and (3) to be equivalent.
Keywords: $\pi$-Hall subgroup, normal closure, pronormal subgroup.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-45025
Supported by RFBR, project No. 17-51-45025.
Received: 18.04.2017
English version:
Algebra and Logic, 2018, Volume 56, Issue 6, Pages 451–457
DOI: https://doi.org/10.1007/s10469-018-9467-8
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: E. P. Vdovin, M. N. Nesterov, D. O. Revin, “Pronormality of Hall subgroups in their normal closure”, Algebra Logika, 56:6 (2017), 682–690; Algebra and Logic, 56:6 (2018), 451–457
Citation in format AMSBIB
\Bibitem{VdoNesRev17}
\by E.~P.~Vdovin, M.~N.~Nesterov, D.~O.~Revin
\paper Pronormality of Hall subgroups in their normal closure
\jour Algebra Logika
\yr 2017
\vol 56
\issue 6
\pages 682--690
\mathnet{http://mi.mathnet.ru/al824}
\crossref{https://doi.org/10.17377/alglog.2017.56.603}
\transl
\jour Algebra and Logic
\yr 2018
\vol 56
\issue 6
\pages 451--457
\crossref{https://doi.org/10.1007/s10469-018-9467-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426390500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042436357}
Linking options:
  • https://www.mathnet.ru/eng/al824
  • https://www.mathnet.ru/eng/al/v56/i6/p682
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :51
    References:69
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024