Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2017, Volume 56, Number 5, Pages 593–612
DOI: https://doi.org/10.17377/alglog.2017.56.505
(Mi al818)
 

This article is cited in 14 scientific papers (total in 14 papers)

Divisible rigid groups. Algebraic closedness and elementary theory

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
References:
Abstract: A group $G$ is said to be rigid if it contains a normal series
$$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$
whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb Z[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb Z[G/G_i]$. Every rigid group is embedded in a divisible one. We prove two theorems.
THEOREM 1. The following three conditions for a group $G$ are equivalent: $G$ is algebraically closed in the class $\Sigma_m$ of all $m$-rigid groups; $G$ is existentially closed in the class $\Sigma_m$; $G$ is a divisible $m$-rigid group.
THEOREM 2. The elementary theory of a class of divisible $m$-rigid groups is complete.
Keywords: divisible rigid group, algebraic closedness, elementary theory.
Received: 20.09.2015
English version:
Algebra and Logic, 2017, Volume 56, Issue 5, Pages 395–408
DOI: https://doi.org/10.1007/s10469-017-9461-6
Bibliographic databases:
Document Type: Article
UDC: 512.5+510.6
Language: Russian
Citation: N. S. Romanovskii, “Divisible rigid groups. Algebraic closedness and elementary theory”, Algebra Logika, 56:5 (2017), 593–612; Algebra and Logic, 56:5 (2017), 395–408
Citation in format AMSBIB
\Bibitem{Rom17}
\by N.~S.~Romanovskii
\paper Divisible rigid groups. Algebraic closedness and elementary theory
\jour Algebra Logika
\yr 2017
\vol 56
\issue 5
\pages 593--612
\mathnet{http://mi.mathnet.ru/al818}
\crossref{https://doi.org/10.17377/alglog.2017.56.505}
\transl
\jour Algebra and Logic
\yr 2017
\vol 56
\issue 5
\pages 395--408
\crossref{https://doi.org/10.1007/s10469-017-9461-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416984900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85035793341}
Linking options:
  • https://www.mathnet.ru/eng/al818
  • https://www.mathnet.ru/eng/al/v56/i5/p593
    Cycle of papers
    This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :58
    References:39
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024