|
This article is cited in 3 scientific papers (total in 3 papers)
$P$-stable polygons
A. A. Stepanovaab, D. O. Ptakhova a School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690091 Russia
b Institute of Applied Mathematics, ul. Radio 7, Vladivostok, 690041 Russia
Abstract:
$P$-stable polygons are studied. It is proved that the property of being $(P,s)$-, $(P,a)$-, and $(P,e)$-stable for the class of all polygons over a monoid $S$ is equivalent to $S$ being a group. We describe the structure of $(P,s)$-, $(P,a)$-, and $(P,e)$-stable polygons $SA$ over a countable left-zero monoid $S$ under the condition that the set $A\setminus SA$ is indiscernible over a right-zero monoid.
Keywords:
$P$-stable theories, polygons, $P$-stable polygons.
Received: 14.12.2015
Citation:
A. A. Stepanova, D. O. Ptakhov, “$P$-stable polygons”, Algebra Logika, 56:4 (2017), 486–505; Algebra and Logic, 56:4 (2017), 324–336
Linking options:
https://www.mathnet.ru/eng/al810 https://www.mathnet.ru/eng/al/v56/i4/p486
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 36 | References: | 38 | First page: | 9 |
|