|
This article is cited in 1 scientific paper (total in 1 paper)
Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$
A. N. Grishkovab, M. N. Rasskazovacd a Instituto de Matemática e Estatística, Universidade de São Paulo, Postal 66281, São Paulo-SEP, BRASIL, 05311-970
b Dostoevskii Omsk State University, pr. Mira 55-A, Omsk, 644077 Russia
c Omsk State Technical University, pr. Mira 11, Omsk, 644050 Russia
d Siberian State Automobile and Highway University, pr. Mira 5, Omsk, 644080 Russia
Abstract:
A. V. Yushchenko's paper [Sib. Mat. Zh., 43, No. 5, 1197–1207] implies that two nondiagonal forms like $S(n,d)+\mathbf Z_pA$ and $S(n,d)+\mathbf Z_pA'$ are isomorphic if the elements of $A$ and $A'$ are conjugated via the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$. In the present paper, we settle just this question on conjugation. In other words, we describe the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$ and clarify under which conditions two elements of $S(n,d)$ are conjugate under the action of this group on $S(n,d)$, $p>2$.
Keywords:
Lie algebra, diagonal $\mathbf Z_p$-form, automorphism group.
Received: 04.03.2016 Revised: 14.11.2016
Citation:
A. N. Grishkov, M. N. Rasskazova, “Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$”, Algebra Logika, 56:4 (2017), 406–420; Algebra and Logic, 56:4 (2017), 269–280
Linking options:
https://www.mathnet.ru/eng/al805 https://www.mathnet.ru/eng/al/v56/i4/p406
|
Statistics & downloads: |
Abstract page: | 181 | Full-text PDF : | 31 | References: | 31 | First page: | 5 |
|