Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 4, Pages 411–424 (Mi al80)  

This article is cited in 10 scientific papers (total in 10 papers)

Indices of Maximal Subgroups of Finite Soluble Groups

V. S. Monakhov

Francisk Skorina Gomel State University
References:
Abstract: We look at the structure of a soluble group $G$ depending on the value of a function $m(G)=\max\limits_{p\in\pi(G)}$, where $m_p(G)=\max\{\log_p|G:M|\mid M<_{\max}G,\ |G:M|=p^a\}$, $p\in \pi (G)$.
\medskip Theorem 1. {\it States that for a soluble group $G$, (1) $r(G/\Phi (G))=m(G)$; (2) $d(G/\Phi (G))\leqslant1+\rho(m(G))\leqslant3+m(G)$; (3) $l_p(G)\leqslant1+t$, where $2^{t-1}<m_p(G)\leqslant 2^t$.}
\medskip Here, $\Phi(G)$ is the Frattini subgroup of $G$, and $r(G)$, $d(G)$, and $l_p(G)$ are, respectively, the principal rank, the derived length, and the $p$-length of $G$. The maximum of derived lengths of completely reducible soluble subgroups of a general linear group $GL(n,F)$ of degree $n$, where $F$ is a field, is denoted by $\rho(n)$. The function $m(G)$ allows us to establish the existence of a new class of conjugate subgroups in soluble groups. Namely,
\medskip Theorem 2. {\it Maintains that for any natural $k$, every soluble group $G$ contains a subgroup $K$ possessing the following properties: (1) $m(K)\leqslant k$; (2) if $T$ and $H$ are subgroups of $G$ such that $K\leqslant T<_{\max}H\leqslant G$ then $|H:T|=p^t$ for some prime $p$ and for $t>k$. Moreover, every two subgroups of $G$ enjoying (1) and (2) are mutually conjugate.}
Keywords: finite soluble group, maximal subgroup.
Received: 20.10.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 4, Pages 230–237
DOI: https://doi.org/10.1023/B:ALLO.0000035114.00094.62
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. S. Monakhov, “Indices of Maximal Subgroups of Finite Soluble Groups”, Algebra Logika, 43:4 (2004), 411–424; Algebra and Logic, 43:4 (2004), 230–237
Citation in format AMSBIB
\Bibitem{Mon04}
\by V.~S.~Monakhov
\paper Indices of Maximal Subgroups of Finite Soluble Groups
\jour Algebra Logika
\yr 2004
\vol 43
\issue 4
\pages 411--424
\mathnet{http://mi.mathnet.ru/al80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2105846}
\zmath{https://zbmath.org/?q=an:1079.20027}
\elib{https://elibrary.ru/item.asp?id=9127554}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 4
\pages 230--237
\crossref{https://doi.org/10.1023/B:ALLO.0000035114.00094.62}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249094561}
Linking options:
  • https://www.mathnet.ru/eng/al80
  • https://www.mathnet.ru/eng/al/v43/i4/p411
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :171
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024