Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 5, Pages 558–570
DOI: https://doi.org/10.17377/alglog.2016.55.503
(Mi al761)
 

This article is cited in 5 scientific papers (total in 5 papers)

Levi decomposition for carpet subgroups of Chevalley groups over a field

Ya. N. Nuzhin

Institute of Mathematics and Computer Science, Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041 Russia
Full-text PDF (160 kB) Citations (5)
References:
Abstract: It is proved that a carpet subgroup of a Chevalley group of type $\Phi$ over a field is a semidirect product whose kernel is defined by a unipotent carpet of type $\Phi$, while the noninvariant factor is a central product of carpet subgroups each of which is defined by an irreducible subcarpet of type $\Phi_i$ for some indecomposable root subsystem $\Phi_i$ of $\Phi$. The obtained result can be viewed as an analog of the Levi decomposition.
Keywords: Chevalley group, quasiclosed root system, carpet of additive subgroups, carpet subgroup.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00707
Supported by RFBR, project No. 16-01-00707.
Received: 23.12.2015
English version:
Algebra and Logic, 2016, Volume 55, Issue 5, Pages 367–375
DOI: https://doi.org/10.1007/s10469-016-9408-3
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: Ya. N. Nuzhin, “Levi decomposition for carpet subgroups of Chevalley groups over a field”, Algebra Logika, 55:5 (2016), 558–570; Algebra and Logic, 55:5 (2016), 367–375
Citation in format AMSBIB
\Bibitem{Nuz16}
\by Ya.~N.~Nuzhin
\paper Levi decomposition for carpet subgroups of Chevalley groups over a~field
\jour Algebra Logika
\yr 2016
\vol 55
\issue 5
\pages 558--570
\mathnet{http://mi.mathnet.ru/al761}
\crossref{https://doi.org/10.17377/alglog.2016.55.503}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 5
\pages 367--375
\crossref{https://doi.org/10.1007/s10469-016-9408-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390038100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85000997347}
Linking options:
  • https://www.mathnet.ru/eng/al761
  • https://www.mathnet.ru/eng/al/v55/i5/p558
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024