Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 4, Pages 493–497
DOI: https://doi.org/10.17377/alglog.2016.55.408
(Mi al755)
 

The class of bounded lattices is not axiomatizable

M. V. Schwidefskyab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
References:
Abstract: We prove that the class of bounded (lower bounded, upper bounded) lattices is not closed under ultraproducts, thereby solving an open problem.
Keywords: axiomatizable class, lower bounded lattice, free lattice, ultraproduct.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6848.2016.1
Supported by the Grants Council (under RF President) for State Aid of Leading Scientific Schools, grant NSh-6848.2016.1.
Received: 07.12.2015
English version:
Algebra and Logic, 2016, Volume 55, Issue 4, Pages 327–329
DOI: https://doi.org/10.1007/s10469-016-9402-9
Bibliographic databases:
Document Type: Article
UDC: 512.56
Language: Russian
Citation: M. V. Schwidefsky, “The class of bounded lattices is not axiomatizable”, Algebra Logika, 55:4 (2016), 493–497; Algebra and Logic, 55:4 (2016), 327–329
Citation in format AMSBIB
\Bibitem{Sch16}
\by M.~V.~Schwidefsky
\paper The class of bounded lattices is not axiomatizable
\jour Algebra Logika
\yr 2016
\vol 55
\issue 4
\pages 493--497
\mathnet{http://mi.mathnet.ru/al755}
\crossref{https://doi.org/10.17377/alglog.2016.55.408}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 4
\pages 327--329
\crossref{https://doi.org/10.1007/s10469-016-9402-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000388103400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994761817}
Linking options:
  • https://www.mathnet.ru/eng/al755
  • https://www.mathnet.ru/eng/al/v55/i4/p493
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :47
    References:38
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024