Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 4, Pages 478–492
DOI: https://doi.org/10.17377/alglog.2016.55.407
(Mi al754)
 

This article is cited in 6 scientific papers (total in 6 papers)

Decomposition of a group over an Abelian normal subgroup

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (175 kB) Citations (6)
References:
Abstract: Let a group $G$ have an Abelian normal subgroup $A$; put $\overline G=G/A$ and $\overline g=gA$ for $g\in G$. We can think of $A$ as a right $\mathbb Z\overline G$-module and define the action of an element $u=\alpha_1\overline g_1+\dots+\alpha_n\overline g_n\in\mathbb Z\overline G$ on $a\in A$ by a formula $a^u=(a^{g_1})^{\alpha_1}\cdot\ldots\cdot(a^{g_n})^{\alpha_n}$; here $a^{g_i}=g^{-1}_iag_i$. Denote by $\Theta_{\mathbb Z\overline G}(A)$ the annihilator of $A$ in the ring $\mathbb Z\overline G$, which is a two-sided ideal. Let $R=\mathbb Z\overline G/\Theta_{\mathbb Z\overline G}(A)$. A subgroup $A$ can also be treated as an $R$-module. We give a criterion for the existence of an $R$-decomposition of $G$ over $A$, i.e., the possibility of embedding $G$ in a semidirect product $\overline G\cdot D$, where $D$ is an $R$-module. It is also proved that an $R$-decomposition always exists in one important case.
Keywords: Abelian normal subgroup, $R$-decomposition.
Funding agency Grant number
Russian Science Foundation 14-21-00065
Supported by Russian Science Foundation, project No. 14-21-00065.
Received: 10.02.2016
English version:
Algebra and Logic, 2016, Volume 55, Issue 4, Pages 315–326
DOI: https://doi.org/10.1007/s10469-016-9401-x
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. S. Romanovskii, “Decomposition of a group over an Abelian normal subgroup”, Algebra Logika, 55:4 (2016), 478–492; Algebra and Logic, 55:4 (2016), 315–326
Citation in format AMSBIB
\Bibitem{Rom16}
\by N.~S.~Romanovskii
\paper Decomposition of a~group over an Abelian normal subgroup
\jour Algebra Logika
\yr 2016
\vol 55
\issue 4
\pages 478--492
\mathnet{http://mi.mathnet.ru/al754}
\crossref{https://doi.org/10.17377/alglog.2016.55.407}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 4
\pages 315--326
\crossref{https://doi.org/10.1007/s10469-016-9401-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000388103400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994758731}
Linking options:
  • https://www.mathnet.ru/eng/al754
  • https://www.mathnet.ru/eng/al/v55/i4/p478
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :55
    References:43
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024