|
This article is cited in 6 scientific papers (total in 6 papers)
Decomposition of a group over an Abelian normal subgroup
N. S. Romanovskiiab a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Abstract:
Let a group $G$ have an Abelian normal subgroup $A$; put $\overline G=G/A$ and $\overline g=gA$ for $g\in G$. We can think of $A$ as a right $\mathbb Z\overline G$-module and define the action of an element $u=\alpha_1\overline g_1+\dots+\alpha_n\overline g_n\in\mathbb Z\overline G$ on $a\in A$ by a formula $a^u=(a^{g_1})^{\alpha_1}\cdot\ldots\cdot(a^{g_n})^{\alpha_n}$; here $a^{g_i}=g^{-1}_iag_i$. Denote by $\Theta_{\mathbb Z\overline G}(A)$ the annihilator of $A$ in the ring $\mathbb Z\overline G$, which is a two-sided ideal. Let $R=\mathbb Z\overline G/\Theta_{\mathbb Z\overline G}(A)$. A subgroup $A$ can also be treated as an $R$-module. We give a criterion for the existence of an $R$-decomposition of $G$ over $A$, i.e., the possibility of embedding $G$ in a semidirect product $\overline G\cdot D$, where $D$ is an $R$-module. It is also proved that an $R$-decomposition always exists in one important case.
Keywords:
Abelian normal subgroup, $R$-decomposition.
Received: 10.02.2016
Citation:
N. S. Romanovskii, “Decomposition of a group over an Abelian normal subgroup”, Algebra Logika, 55:4 (2016), 478–492; Algebra and Logic, 55:4 (2016), 315–326
Linking options:
https://www.mathnet.ru/eng/al754 https://www.mathnet.ru/eng/al/v55/i4/p478
|
Statistics & downloads: |
Abstract page: | 251 | Full-text PDF : | 55 | References: | 43 | First page: | 7 |
|