|
$\Pi^1_1$-completeness of the computable categoricity problem
for projective planes
N. T. Kogabaevab a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Abstract:
Computable presentations for projective planes are studied. We prove that the problem of computable categoricity is $\Pi^1_1$-complete for the following classes of projective planes: Pappian projective planes, Desarguesian projective planes, arbitrary projective planes.
Keywords:
computable categoricity, computable structure, computable dimension, Desarguesian projective plane, Pappian projective plane, projective plane.
Received: 27.04.2016 Revised: 24.06.2016
Citation:
N. T. Kogabaev, “$\Pi^1_1$-completeness of the computable categoricity problem
for projective planes”, Algebra Logika, 55:4 (2016), 432–440; Algebra and Logic, 55:4 (2016), 283–288
Linking options:
https://www.mathnet.ru/eng/al750 https://www.mathnet.ru/eng/al/v55/i4/p432
|
Statistics & downloads: |
Abstract page: | 241 | Full-text PDF : | 30 | References: | 49 | First page: | 9 |
|