Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 1, Pages 54–69 (Mi al75)  

This article is cited in 11 scientific papers (total in 11 papers)

A characterization of alternating groups

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is proved that a group $G$ generated by a conjugacy class $X$ of elements of order 3, so that every two non-commuting elements of $X$ generate a subgroup isomorphic to an alternating group of degree 4 or 5, is locally finite. More precisely, either $G$ contains a normal elementary 2-subgroup of index 3, or $G$ is isomorphic to an alternating group of permutations on some (possibly infinite) set.
Keywords: alternating group, locally finite group.
Received: 18.02.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 1, Pages 31–39
DOI: https://doi.org/10.1007/s10469-005-0004-1
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: V. D. Mazurov, “A characterization of alternating groups”, Algebra Logika, 44:1 (2005), 54–69; Algebra and Logic, 44:1 (2005), 31–39
Citation in format AMSBIB
\Bibitem{Maz05}
\by V.~D.~Mazurov
\paper A~characterization of alternating groups
\jour Algebra Logika
\yr 2005
\vol 44
\issue 1
\pages 54--69
\mathnet{http://mi.mathnet.ru/al75}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165873}
\zmath{https://zbmath.org/?q=an:1096.20004}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 1
\pages 31--39
\crossref{https://doi.org/10.1007/s10469-005-0004-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17444388567}
Linking options:
  • https://www.mathnet.ru/eng/al75
  • https://www.mathnet.ru/eng/al/v44/i1/p54
    Cycle of papers
    This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:676
    Full-text PDF :218
    References:105
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024