Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 3, Pages 366–379
DOI: https://doi.org/10.17377/alglog.2016.55.305
(Mi al746)
 

This article is cited in 5 scientific papers (total in 5 papers)

A sufficient condition for nonpresentability of structures in hereditarily finite superstructures

A. S. Morozovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (179 kB) Citations (5)
References:
Abstract: We introduce a class of existentially Steinitz structures containing, in particular, the fields of real and complex numbers. A general result is proved which implies that if $\mathfrak M$ is an existentially Steinitz structure then the following structures cannot be embedded in any structure $\Sigma$-presentable with trivial equivalence over $\mathbb{HF}(\mathfrak M)$: the Boolean algebra of all subsets of $\omega$, its factor modulo the ideal consisting of finite sets, the group of all permutations on $\omega$, its factor modulo the subgroup of all finitary permutations, the semigroup of all mappings from $\omega$ to $\omega$, the lattice of all open sets of real numbers, the lattice of all closed sets of real numbers, the group of all permutations of $\mathbb R$ $\Sigma$-definable with parameters over $\mathbb{HF(R)}$, and the semigroup of such mappings from $\mathbb R$ to $\mathbb R$.
Keywords: existentially Steinitz structure, hereditarily finite superstructure, $\Sigma$-presentability.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-860.2014.1
Supported by the Grants Council (under RF President) for State Aid of Leading Scientific Schools, grant NSh-860.2014.1.
Received: 09.10.2014
Revised: 09.10.2015
English version:
Algebra and Logic, 2016, Volume 55, Issue 3, Pages 242–251
DOI: https://doi.org/10.1007/s10469-016-9392-7
Bibliographic databases:
Document Type: Article
UDC: 510.65
Language: Russian
Citation: A. S. Morozov, “A sufficient condition for nonpresentability of structures in hereditarily finite superstructures”, Algebra Logika, 55:3 (2016), 366–379; Algebra and Logic, 55:3 (2016), 242–251
Citation in format AMSBIB
\Bibitem{Mor16}
\by A.~S.~Morozov
\paper A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
\jour Algebra Logika
\yr 2016
\vol 55
\issue 3
\pages 366--379
\mathnet{http://mi.mathnet.ru/al746}
\crossref{https://doi.org/10.17377/alglog.2016.55.305}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 3
\pages 242--251
\crossref{https://doi.org/10.1007/s10469-016-9392-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385155300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989172962}
Linking options:
  • https://www.mathnet.ru/eng/al746
  • https://www.mathnet.ru/eng/al/v55/i3/p366
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :32
    References:48
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024