Abstract:
We give sufficient conditions under which an upper semilattice of computably enumerable m-degrees is isomorphic to an ideal of a Rogers semilattice of a two-element family of sets in the Ershov hierarchy. It is shown that the given conditions are not necessary.
Citation:
B. S. Kalmurzaev, “Embeddability of the semilattice L0m in Rogers semilattices”, Algebra Logika, 55:3 (2016), 328–340; Algebra and Logic, 55:3 (2016), 217–225
This publication is cited in the following 5 articles:
D. D. Nurlanbek, “ON THE EXISTENCE OF UNIVERSAL NUMBERINGS”, jour, 20:1 (2023), 14
S. A. Badaev, S. S. Goncharov, “Polureshetki Rodzhersa s naimenshim i naibolshim elementami v ierarkhii Ershova”, Algebra i logika, 61:3 (2022), 334–340
S. A. Badaev, S. S. Goncharov, “Rogers Semilattices with Least and Greatest Elements in the Ershov Hierarchy”, Algebra Logic, 61:3 (2022), 225
N. A. Bazhenov, B. S. Kalmurzaev, “Rogers semilattices for families of equivalence relations in the Ershov hierarchy”, Siberian Math. J., 60:2 (2019), 223–234
B. S. Kalmurzayev, N. A. Bazhenov, “Embeddability of m-degrees into equivalence relations in the Ershov hierarchy”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 1:317 (2018), 14–17