Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2016, Volume 55, Number 2, Pages 192–218
DOI: https://doi.org/10.17377/alglog.2016.55.203
(Mi al737)
 

This article is cited in 8 scientific papers (total in 8 papers)

Projections of finite one-generated rings with identity

S. S. Korobkov

Urals State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065 Russia
Full-text PDF (250 kB) Citations (8)
References:
Abstract: Associative rings $R$ and $R'$ are said to be lattice-isomorphic if their subring lattices $L(R)$ and $L(R')$ are isomorphic. An isomorphism of the lattice $L(R)$ onto the lattice $L(R')$ is called a projection (or else a lattice isomorphism) of the ring $R$ onto the ring $R'$. A ring $R'$ is called the projective image of a ring $R$. Lattice isomorphisms of finite one-generated rings with identity are studied. We elucidate the general structure of finite one-generated rings with identity and also give necessary and sufficient conditions for a finite ring decomposable into a direct sum of Galois rings to be generated by one element. Conditions are found under which the projective image of a ring decomposable into a direct sum of finite fields is a one-generated ring. We look at lattice isomorphisms of one-generated rings decomposable into direct sums of Galois rings of different types. Three main types of Galois rings are distinguished: finite fields, rings generated by idempotents, and rings of the form $GR(p^n,m)$, where $m>1$ and $n>1$. We specify sufficient conditions for the projective image of a onegenerated ring decomposable into a sum of Galois rings and a nil ideal to be generated by one element.
Keywords: finite rings, one-generated rings, lattice isomorphisms of associative rings.
Received: 11.06.2015
English version:
Algebra and Logic, 2016, Volume 55, Issue 2, Pages 128–145
DOI: https://doi.org/10.1007/s10469-016-9383-8
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Projections of finite one-generated rings with identity”, Algebra Logika, 55:2 (2016), 192–218; Algebra and Logic, 55:2 (2016), 128–145
Citation in format AMSBIB
\Bibitem{Kor16}
\by S.~S.~Korobkov
\paper Projections of finite one-generated rings with identity
\jour Algebra Logika
\yr 2016
\vol 55
\issue 2
\pages 192--218
\mathnet{http://mi.mathnet.ru/al737}
\crossref{https://doi.org/10.17377/alglog.2016.55.203}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 2
\pages 128--145
\crossref{https://doi.org/10.1007/s10469-016-9383-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382002800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84981275755}
Linking options:
  • https://www.mathnet.ru/eng/al737
  • https://www.mathnet.ru/eng/al/v55/i2/p192
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :48
    References:48
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024