Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 5, Pages 589–598
DOI: https://doi.org/10.17377/alglog.2015.54.503
(Mi al714)
 

Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets

S. V. Varaksin

Altai State University, pr. Lenina 61, Barnaul, 656049, Russia
References:
Abstract: A representation of a free $m$-product in the class of all of $m$-groups is constructed as a factor of a free $m$-group over a free product in the class of partially ordered groups with reversional automorphisms.
Keywords: $m$-group, free $m$-group, partially ordered group with a reversional automorphism.
Received: 11.11.2014
English version:
Algebra and Logic, 2015, Volume 54, Issue 5, Pages 380–386
DOI: https://doi.org/10.1007/s10469-015-9359-0
Bibliographic databases:
Document Type: Article
UDC: 512.545
Language: Russian
Citation: S. V. Varaksin, “Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets”, Algebra Logika, 54:5 (2015), 589–598; Algebra and Logic, 54:5 (2015), 380–386
Citation in format AMSBIB
\Bibitem{Var15}
\by S.~V.~Varaksin
\paper Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets
\jour Algebra Logika
\yr 2015
\vol 54
\issue 5
\pages 589--598
\mathnet{http://mi.mathnet.ru/al714}
\crossref{https://doi.org/10.17377/alglog.2015.54.503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468419}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 5
\pages 380--386
\crossref{https://doi.org/10.1007/s10469-015-9359-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366155000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958039527}
Linking options:
  • https://www.mathnet.ru/eng/al714
  • https://www.mathnet.ru/eng/al/v54/i5/p589
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :30
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024