Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 5, Pages 575–588
DOI: https://doi.org/10.17377/alglog.2015.54.502
(Mi al713)
 

This article is cited in 2 scientific papers (total in 2 papers)

Dominions in solvable groups

A. I. Budkin

Altai State University, pr. Lenina 61, Barnaul, 656049, Russia
Full-text PDF (169 kB) Citations (2)
References:
Abstract: The dominion of a subgroup $H$ of a group $G$ in a class $M$ is the set of all elements $a\in G$ whose images are equal for all pairs of homomorphisms from $G$ to each group in $M$ that coincide on $H$. A group $H$ is absolutely closed in a class $M$ if, for any group $G$ in $M$ and any inclusion $H\le G$, the dominion of $H$ in $G$ (with respect to $M$) coincides with $H$ (i.e., $H$ is closed in $G$).
We prove that every torsion-free nontrivial Abelian group is not absolutely closed in $\mathcal{AN}_c$. It is shown that if a subgroup $H$ of $G$ in $\mathcal N_c\mathcal A$ has trivial intersection with the commutator subgroup $G'$, then the dominion of $H$ in $G$ (with respect to $\mathcal N_c\mathcal A$) coincides with $H$. It is stated that the study of closed subgroups reduces to treating dominions of finitely generated subgroups of finitely generated groups.
Keywords: quasivariety, nilpotent group, extension of Abelian group by nilpotent group, dominion, closed subgroup.
Received: 17.11.2014
Revised: 29.03.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 5, Pages 370–379
DOI: https://doi.org/10.1007/s10469-015-9358-1
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: A. I. Budkin, “Dominions in solvable groups”, Algebra Logika, 54:5 (2015), 575–588; Algebra and Logic, 54:5 (2015), 370–379
Citation in format AMSBIB
\Bibitem{Bud15}
\by A.~I.~Budkin
\paper Dominions in solvable groups
\jour Algebra Logika
\yr 2015
\vol 54
\issue 5
\pages 575--588
\mathnet{http://mi.mathnet.ru/al713}
\crossref{https://doi.org/10.17377/alglog.2015.54.502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468418}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 5
\pages 370--379
\crossref{https://doi.org/10.1007/s10469-015-9358-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366155000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957933223}
Linking options:
  • https://www.mathnet.ru/eng/al713
  • https://www.mathnet.ru/eng/al/v54/i5/p575
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024