Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 3, Pages 291–320 (Mi al71)  

This article is cited in 29 scientific papers (total in 29 papers)

$\Sigma$-Subsets of Natural Numbers

A. S. Morozov, V. G. Puzarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is shown that the class of all possible families of $\Sigma$-subsets of finite ordinals in admissible sets coincides with a class of all non-empty families closed under $e$-reducibility and $\oplus$. The construction presented has the property of being minimal under effective definability. Also, we describe the smallest (w.r.t. inclusion) classes of families of subsets of natural numbers, computable in hereditarily finite superstructures. A new series of examples is constructed in which admissible sets lack in universal $\Sigma$-function. Furthermore, we show that some principles of classical computability theory (such as the existence of an infinite non-trivial enumerable subset, existence of an infinite computable subset, reduction principle, uniformization principle) are always satisfied for the classes of all $\Sigma$-subsets of finite ordinals in admissible sets
Keywords: admissible set, $\Sigma$-subset, finite ordinal, hereditarily finite superstructure, universal $\Sigma$-function.
Received: 22.04.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 3, Pages 162–178
DOI: https://doi.org/10.1023/B:ALLO.0000028930.44605.68
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: A. S. Morozov, V. G. Puzarenko, “$\Sigma$-Subsets of Natural Numbers”, Algebra Logika, 43:3 (2004), 291–320; Algebra and Logic, 43:3 (2004), 162–178
Citation in format AMSBIB
\Bibitem{MorPuz04}
\by A.~S.~Morozov, V.~G.~Puzarenko
\paper $\Sigma$-Subsets of Natural Numbers
\jour Algebra Logika
\yr 2004
\vol 43
\issue 3
\pages 291--320
\mathnet{http://mi.mathnet.ru/al71}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084038}
\zmath{https://zbmath.org/?q=an:1115.03051}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 3
\pages 162--178
\crossref{https://doi.org/10.1023/B:ALLO.0000028930.44605.68}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3943103689}
Linking options:
  • https://www.mathnet.ru/eng/al71
  • https://www.mathnet.ru/eng/al/v43/i3/p291
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:709
    Full-text PDF :180
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024