|
This article is cited in 16 scientific papers (total in 16 papers)
Complexity of quasivariety lattices
M. V. Schwidefskyab a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Abstract:
If a quasivariety $\mathbf A$ of algebraic systems of finite signature satisfies some generalization of a sufficient condition for $Q$-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set $\{\mathcal S_i\mid i\in I\}$ of finite semilattices, the lattice $\prod_{i\in I}\operatorname{Sub}(\mathcal S_i)$ is a homomorphic image of some sublattice of a quasivariety lattice $\operatorname{Lq}(\mathbf A)$. Specifically, there exists a subclass $\mathbf{K\subseteq A}$ such that the problem of embedding a finite lattice in a lattice $\operatorname{Lq}(\mathbf K)$ of $\mathbf K$-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
Keywords:
computable set, lattice, quasivariety, $Q$-universality, undecidable problem, universal class, variety.
Received: 17.09.2014 Revised: 03.05.2015
Citation:
M. V. Schwidefsky, “Complexity of quasivariety lattices”, Algebra Logika, 54:3 (2015), 381–398; Algebra and Logic, 54:3 (2015), 245–257
Linking options:
https://www.mathnet.ru/eng/al699 https://www.mathnet.ru/eng/al/v54/i3/p381
|
Statistics & downloads: |
Abstract page: | 406 | Full-text PDF : | 56 | References: | 65 | First page: | 24 |
|