Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 3, Pages 351–380
DOI: https://doi.org/10.17377/alglog.2015.54.304
(Mi al698)
 

This article is cited in 1 scientific paper (total in 1 paper)

$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups

X. Chena, W. Guoa, A. N. Skibab

a University of Science and Technology of China, Hefei, 230026, P. R. China
b F. Skorina Gomel State University, Gomel, 246019, Belarus
Full-text PDF (254 kB) Citations (1)
References:
Abstract: Let $\mathfrak F$ be a nonempty formation of groups, $\tau$ a subgroup functor, and $H$$p$-subgroup of a finite group $G$. Suppose also that $\bar G=G/H_G$ and $\bar H=H/H_G$. We say that $H$ is $\mathfrak F_\tau$-embedded ($\mathfrak F_{\tau,\Phi}$-embedded) in $G$ if, for some quasinormal subgroup $\bar T$ of $\bar G$ and some $\tau$-subgroup $\bar S$ of $\bar G$ contained in $\bar H$, the subgroup $\bar H\bar T$ is $S$-quasinormal in $\bar G$ and $\bar H\cap\bar T\le\bar SZ_\mathfrak F(\bar G)$ (resp., $\bar H\cap\bar T\le\bar SZ_{\mathfrak F,\Phi}(\bar G)$). Using the notions of $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups, we give some characterizations of the structure of finite groups. A number of earlier concepts and related results are further developed and unified.
Keywords: finite group, subgroup functor, $\mathfrak F_\tau$-embedded subgroup, $\mathfrak F_{\tau,\Phi}$-embedded subgroup, supersoluble group.
Received: 16.01.2014
Revised: 08.05.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 3, Pages 226–244
DOI: https://doi.org/10.1007/s10469-015-9343-8
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.57
Language: Russian
Citation: X. Chen, W. Guo, A. N. Skiba, “$\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups”, Algebra Logika, 54:3 (2015), 351–380; Algebra and Logic, 54:3 (2015), 226–244
Citation in format AMSBIB
\Bibitem{CheGuoSki15}
\by X.~Chen, W.~Guo, A.~N.~Skiba
\paper $\mathfrak F_\tau$-embedded and $\mathfrak F_{\tau,\Phi}$-embedded subgroups of finite groups
\jour Algebra Logika
\yr 2015
\vol 54
\issue 3
\pages 351--380
\mathnet{http://mi.mathnet.ru/al698}
\crossref{https://doi.org/10.17377/alglog.2015.54.304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467192}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 3
\pages 226--244
\crossref{https://doi.org/10.1007/s10469-015-9343-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363940600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84945276301}
Linking options:
  • https://www.mathnet.ru/eng/al698
  • https://www.mathnet.ru/eng/al/v54/i3/p351
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :54
    References:73
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024