Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 3, Pages 305–314
DOI: https://doi.org/10.17377/alglog.2015.54.301
(Mi al695)
 

This article is cited in 6 scientific papers (total in 6 papers)

Ideals without minimal elements in Rogers semilattices

A. A. Issakhov

Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Alma-Ata, 050038, Kazakhstan
Full-text PDF (136 kB) Citations (6)
References:
Abstract: We prove a criterion for the existence of a minimal numbering, which is reducible to a given numbering of an arbitrary set. The criterion is used to show that, for any infinite $A$-computable family $F$ of total functions, where $\varnothing'\le_TA$, the Rogers semilattice $\mathcal R_A(F)$ of $A$-computable numberings for $F$ contains an ideal without minimal elements.
Keywords: minimal numbering, $A$-computable numbering, Rogers semilattice, ideal.
Received: 06.11.2014
English version:
Algebra and Logic, 2015, Volume 54, Issue 3, Pages 197–203
DOI: https://doi.org/10.1007/s10469-015-9340-y
Bibliographic databases:
Document Type: Article
UDC: 510.54
Language: Russian
Citation: A. A. Issakhov, “Ideals without minimal elements in Rogers semilattices”, Algebra Logika, 54:3 (2015), 305–314; Algebra and Logic, 54:3 (2015), 197–203
Citation in format AMSBIB
\Bibitem{Iss15}
\by A.~A.~Issakhov
\paper Ideals without minimal elements in Rogers semilattices
\jour Algebra Logika
\yr 2015
\vol 54
\issue 3
\pages 305--314
\mathnet{http://mi.mathnet.ru/al695}
\crossref{https://doi.org/10.17377/alglog.2015.54.301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467189}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 3
\pages 197--203
\crossref{https://doi.org/10.1007/s10469-015-9340-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363940600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944936963}
Linking options:
  • https://www.mathnet.ru/eng/al695
  • https://www.mathnet.ru/eng/al/v54/i3/p305
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024