Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 2, Pages 236–242
DOI: https://doi.org/10.17377/alglog.2015.54.206
(Mi al689)
 

How to find (compute) a separant

Yu. L. Ershovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
References:
Abstract: Let $f$ be an arbitrary (unitary) polynomial over a valued field $\mathbb F=\langle F,R\rangle$. In [Algebra i Logika, 53, No. 6, 704–709 (2014)], a separant $\sigma_f$ of such a polynomial was defined to be an element of a value group $\Gamma_{R_0}$ for any algebraically closed extension $\mathbb F_0=\langle F_0,R_0\rangle\ge\mathbb F$. Specifically, the separant was used to obtain a generalization of Hensel's lemma. We show a more algebraic way (compared to the previous) for finding a separant.
Keywords: valued field, separant, Hensel's lemma.
Received: 02.04.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 2, Pages 155–160
DOI: https://doi.org/10.1007/s10469-015-9334-9
Bibliographic databases:
Document Type: Article
UDC: 512.623.4
Language: Russian
Citation: Yu. L. Ershov, “How to find (compute) a separant”, Algebra Logika, 54:2 (2015), 236–242; Algebra and Logic, 54:2 (2015), 155–160
Citation in format AMSBIB
\Bibitem{Ers15}
\by Yu.~L.~Ershov
\paper How to find (compute) a~separant
\jour Algebra Logika
\yr 2015
\vol 54
\issue 2
\pages 236--242
\mathnet{http://mi.mathnet.ru/al689}
\crossref{https://doi.org/10.17377/alglog.2015.54.206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467212}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 2
\pages 155--160
\crossref{https://doi.org/10.1007/s10469-015-9334-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359424500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937721343}
Linking options:
  • https://www.mathnet.ru/eng/al689
  • https://www.mathnet.ru/eng/al/v54/i2/p236
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :74
    References:47
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024