|
How to find (compute) a separant
Yu. L. Ershovab a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Abstract:
Let $f$ be an arbitrary (unitary) polynomial over a valued field $\mathbb F=\langle F,R\rangle$. In [Algebra i Logika, 53, No. 6, 704–709 (2014)], a separant $\sigma_f$ of such a polynomial was defined to be an element of a value group $\Gamma_{R_0}$ for any algebraically closed extension $\mathbb F_0=\langle F_0,R_0\rangle\ge\mathbb F$. Specifically, the separant was used to obtain a generalization of Hensel's lemma. We show a more algebraic way (compared to the previous) for finding a separant.
Keywords:
valued field, separant, Hensel's lemma.
Received: 02.04.2015
Citation:
Yu. L. Ershov, “How to find (compute) a separant”, Algebra Logika, 54:2 (2015), 236–242; Algebra and Logic, 54:2 (2015), 155–160
Linking options:
https://www.mathnet.ru/eng/al689 https://www.mathnet.ru/eng/al/v54/i2/p236
|
Statistics & downloads: |
Abstract page: | 301 | Full-text PDF : | 74 | References: | 47 | First page: | 18 |
|