Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 2, Pages 212–235
DOI: https://doi.org/10.17377/alglog.2015.54.205
(Mi al688)
 

This article is cited in 2 scientific papers (total in 2 papers)

Preserving categoricity and complexity of relations

J. Johnsona, J. F. Knightb, V. Ocasioc, J. Tussupovd, S. VanDenDriesschee

a Dept. of Math., Westfield State Univ., 577 Western Ave, Westfield, MA, 01086-1630, USA
b Dep. Math., Univ. Notre Dame, 255 Hurley, Notre Dame, IN, 46556, USA
c Dept. of Math. Sci., Univ. of Puerto Rico, PO Box 9000, Mayaguez, PR 00681-9000, USA
d Gumilyov Eurasian National University, ul. Satpaeva 2, Astana, Kazakhstan
e First Source Bank, South Bend, Indiana, USA
Full-text PDF (220 kB) Citations (2)
References:
Abstract: In [Algebra i Logika, 16, No. 3 (1977), 257–282; Ann. Pure Appl. Logic, 136, No. 3 (2005), 219–246; J. Symb. Log., 74, No. 3 (2009), 1047–1060], it was proved that for each computable ordinal $\alpha$, there is a structure that is $\Delta^0_\alpha$ categorical but not relatively $\Delta^0_\alpha$ categorical. The original examples were not familiar algebraic kinds of structures. In [Ann. Pure Appl. Logic, 115, Nos. 1–3 (2002), 71–113], it was shown that for $\alpha=1$, there are further examples in several familiar classes of structures, including rings and $2$-step nilpotent groups. Similar examples for all computable successor ordinals were constructed in [Algebra i Logika, 46, No. 4 (2007), 514–524]. In the present paper, this result is extended to computable limit ordinals. We know of an example of an algebraic field that is computably categorical but not relatively computably categorical. Here we show that for each computable limit ordinal $\alpha>\omega$, there is a field which is $\Delta^0_\alpha$ categorical but not relatively $\Delta^0_\alpha$ categorical. Examples on dimension and complexity of relations are given.
Keywords: $\Delta^0_\alpha$ categorical structure, structure that is not relatively $\Delta^0_\alpha$categorical, field.
Received: 13.03.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 2, Pages 140–154
DOI: https://doi.org/10.1007/s10469-015-9333-x
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: J. Johnson, J. F. Knight, V. Ocasio, J. Tussupov, S. VanDenDriessche, “Preserving categoricity and complexity of relations”, Algebra Logika, 54:2 (2015), 212–235; Algebra and Logic, 54:2 (2015), 140–154
Citation in format AMSBIB
\Bibitem{JohKniOca15}
\by J.~Johnson, J.~F.~Knight, V.~Ocasio, J.~Tussupov, S.~VanDenDriessche
\paper Preserving categoricity and complexity of relations
\jour Algebra Logika
\yr 2015
\vol 54
\issue 2
\pages 212--235
\mathnet{http://mi.mathnet.ru/al688}
\crossref{https://doi.org/10.17377/alglog.2015.54.205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467211}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 2
\pages 140--154
\crossref{https://doi.org/10.1007/s10469-015-9333-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359424500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937722042}
Linking options:
  • https://www.mathnet.ru/eng/al688
  • https://www.mathnet.ru/eng/al/v54/i2/p212
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :42
    References:55
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024