Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 2, Pages 193–211
DOI: https://doi.org/10.17377/alglog.2015.54.204
(Mi al687)
 

$\mathbb Q$-completions of free solvable groups

Ch. K. Guptaa, N. S. Romanovskiibc

a Dep. Math., Univ. Manitoba, Winnipeg, R3T 2N2, Canada
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
c Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
References:
Abstract: A group $G$ is said to be complete if, for any natural $n$ and any element $g\in G$, an equation $x^n=g$ is solvable in $G$. If every such equation in the group has at most one solution, then we say that the condition for uniqueness of root extraction is satisfied. A complete group with unique root extraction can be treated as a $\mathbb Q$-power group since it admits an operation of raising an element to any rational power. Let a group $G$ be embedded in a complete group $H$ with unique root extraction, and let $H$ be generated as a $\mathbb Q$-group by the set $G$. Then $H$ is called a $\mathbb Q$-completion of $G$.
We prove that every $m$-rigid group $G$ is independently embedded in a complete $m$-rigid group. Under the specified condition for independence of an embedding, the $\mathbb Q$-completion of the group $G$ in the class of rigid groups is defined uniquely up to $G$-isomorphism. It is stated that the centralizer of any element of an independent $\mathbb Q$-completion of a free solvable group which does not belong to the last nontrivial member of a rigid series of this completion is isomorphic to the additive group of a field $\mathbb Q$ of rational numbers.
Keywords: $m$-rigid group, free solvable group, $\mathbb Q$-completion.
Received: 23.01.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 2, Pages 127–139
DOI: https://doi.org/10.1007/s10469-015-9332-y
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: Ch. K. Gupta, N. S. Romanovskii, “$\mathbb Q$-completions of free solvable groups”, Algebra Logika, 54:2 (2015), 193–211; Algebra and Logic, 54:2 (2015), 127–139
Citation in format AMSBIB
\Bibitem{GupRom15}
\by Ch.~K.~Gupta, N.~S.~Romanovskii
\paper $\mathbb Q$-completions of free solvable groups
\jour Algebra Logika
\yr 2015
\vol 54
\issue 2
\pages 193--211
\mathnet{http://mi.mathnet.ru/al687}
\crossref{https://doi.org/10.17377/alglog.2015.54.204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467210}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 2
\pages 127--139
\crossref{https://doi.org/10.1007/s10469-015-9332-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359424500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938960189}
Linking options:
  • https://www.mathnet.ru/eng/al687
  • https://www.mathnet.ru/eng/al/v54/i2/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :41
    References:39
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024