Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 2, Pages 137–157
DOI: https://doi.org/10.17377/alglog.2015.54.201
(Mi al684)
 

The branching theorem and computable categoricity in the Ershov hierarchy

N. A. Bazhenovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
References:
Abstract: Computable categoricity in the Ershov hierarchy is studied. We consider $F_a$- and $G_a$-categorical structures. These were introduced by B. Khoussainov, F. Stephan, and Y. Yang for $a$, which is a notation for a constructive ordinal. A generalization of the branching theorem is proved for $F_a$-categorical structures. As a consequence we obtain a description of $F_a$-categorical structures for classes of Boolean algebras and Abelian $p$-groups. Furthermore, it is shown that the branching theorem cannot be generalized to $G_a$-categorical structures.
Keywords: computable categoricity, Ershov hierarchy, $F_a$-categoricity, $G_a$-categoricity, branching structure.
Received: 04.11.2013
Revised: 06.02.2015
English version:
Algebra and Logic, 2015, Volume 54, Issue 2, Pages 91–104
DOI: https://doi.org/10.1007/s10469-015-9329-6
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: N. A. Bazhenov, “The branching theorem and computable categoricity in the Ershov hierarchy”, Algebra Logika, 54:2 (2015), 137–157; Algebra and Logic, 54:2 (2015), 91–104
Citation in format AMSBIB
\Bibitem{Baz15}
\by N.~A.~Bazhenov
\paper The branching theorem and computable categoricity in the Ershov hierarchy
\jour Algebra Logika
\yr 2015
\vol 54
\issue 2
\pages 137--157
\mathnet{http://mi.mathnet.ru/al684}
\crossref{https://doi.org/10.17377/alglog.2015.54.201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3467207}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 2
\pages 91--104
\crossref{https://doi.org/10.1007/s10469-015-9329-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000359424500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938999865}
Linking options:
  • https://www.mathnet.ru/eng/al684
  • https://www.mathnet.ru/eng/al/v54/i2/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :66
    References:60
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024