Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2015, Volume 54, Number 1, Pages 16–33
DOI: https://doi.org/10.17377/alglog.2015.54.102
(Mi al672)
 

This article is cited in 10 scientific papers (total in 10 papers)

Projections of Galois rings

S. S. Korobkov

Ural State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065, Russia
References:
Abstract: Let $R$ and $R^\varphi$ be associative rings with isomorphic subring lattices and $\varphi$ be a lattice isomorphism (a projection) of the ring $R$ onto the ring $R^\varphi$. We call $R^\varphi$ the projective image of a ring $R$ and call the ring $R$ itself the projective preimage of a ring $R^\varphi$. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring $GR(p^n,m)$ isomorphic to the factor ring $K[x]/(f(x))$, where $K=Z/p^nZ$, $p$ is a prime, $f(x)$ is a polynomial of degree $m$ irreducible over $K$, and $(f(x))$ is a principal ideal generated by the polynomial $f(x)$ in the ring $K[x]$. Properties of the lattice of subrings of a Galois ring depend on values of numbers $n$ and $m$. A subring lattice $L$ of $GR(p^n,m)$ has the simplest structure for $m=1$ ($L$ is a chain) and for $n=1$ ($L$ is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following:
THEOREM. Let $R=GR(p^n,q^m)$, where $n>1$ and $m>1$. Then $R^\varphi\cong R$.
Keywords: Galois rings, lattice isomorphisms of associative rings.
Received: 06.11.2013
English version:
Algebra and Logic, 2015, Volume 54, Issue 1, Pages 10–22
DOI: https://doi.org/10.1007/s10469-015-9318-9
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Projections of Galois rings”, Algebra Logika, 54:1 (2015), 16–33; Algebra and Logic, 54:1 (2015), 10–22
Citation in format AMSBIB
\Bibitem{Kor15}
\by S.~S.~Korobkov
\paper Projections of Galois rings
\jour Algebra Logika
\yr 2015
\vol 54
\issue 1
\pages 16--33
\mathnet{http://mi.mathnet.ru/al672}
\crossref{https://doi.org/10.17377/alglog.2015.54.102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3444483}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 1
\pages 10--22
\crossref{https://doi.org/10.1007/s10469-015-9318-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353775700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928326733}
Linking options:
  • https://www.mathnet.ru/eng/al672
  • https://www.mathnet.ru/eng/al/v54/i1/p16
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :87
    References:57
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024