Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 6, Pages 735–763 (Mi al664)  

This article is cited in 8 scientific papers (total in 8 papers)

Twisted conjugacy classes in Chevalley groups

T. R. Nasybullov

Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Full-text PDF (411 kB) Citations (8)
References:
Abstract: Let $G$ be a group and $\varphi\colon G\to G$ its automorphism. We say that elements $x$ and $y$ of $G$ are twisted $\varphi$-conjugate, or merely $\varphi$-conjugate (written $x\sim_\varphi y$), if there exists an element $z$ of $G$ for which $x=zy\varphi(z^{-1})$. If, in addition, $\varphi$ is an identical automorphism, then we speak of conjugacy. The $\varphi$-conjugacy class of an element $x$ is denoted by $[x]_\varphi$. The number $R(\varphi)$ of these classes is called the Reidemeister number of an automorphism $\varphi$. A group is said to possess the $R_\infty$ property if the number $R(\varphi)$ is infinite for every automorphism $\varphi$.
We consider Chevalley groups over fields. In particular, it is proved that if an algebraically closed field $F$ of characteristic zero has finite transcendence degree over $\mathbb Q$, then a Chevalley group over $F$ possesses the $R_\infty$ property. Furthermore, a Chevalley group over a field $F$ of characteristic zero has the $R_\infty$ property if $F$ has a periodic automorphism group. The condition that $F$ is of characteristic zero cannot be discarded. This follows from Steinberg's result which says that for connected linear algebraic groups over an algebraically closed field of characteristic zero, there always exists an automorphism $\varphi$ for which $R(\varphi)=1$.
Keywords: twisted conjugacy classes, Chevalley group.
Received: 30.10.2013
Revised: 24.07.2014
English version:
Algebra and Logic, 2015, Volume 53, Issue 6, Pages 481–501
DOI: https://doi.org/10.1007/s10469-015-9310-4
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: T. R. Nasybullov, “Twisted conjugacy classes in Chevalley groups”, Algebra Logika, 53:6 (2014), 735–763; Algebra and Logic, 53:6 (2015), 481–501
Citation in format AMSBIB
\Bibitem{Nas14}
\by T.~R.~Nasybullov
\paper Twisted conjugacy classes in Chevalley groups
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 735--763
\mathnet{http://mi.mathnet.ru/al664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408307}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 481--501
\crossref{https://doi.org/10.1007/s10469-015-9310-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350800200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924166817}
Linking options:
  • https://www.mathnet.ru/eng/al664
  • https://www.mathnet.ru/eng/al/v53/i6/p735
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :96
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024