Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 6, Pages 722–734 (Mi al663)  

This article is cited in 1 scientific paper (total in 1 paper)

Generic theories for series of finite Abelian groups

A. A. Mishchenkoab, V. N. Remeslennikova, A. V. Treierab

a Omsk Branch of Sobolev Institute of Mathematics, ul. Pevtsova 13, Omsk, 644099, Russia
b Omsk State Technical University, pr. Mira 11, Omsk, 644050, Russia
Full-text PDF (178 kB) Citations (1)
References:
Abstract: The notion of a generic theory $\mathsf{GTh}(\mathcal K,\mu)$ with respect to a measure $\mu$ was introduced in [Algebra i Logika, 53, No. 6, 779–789 (2014)]. Here, based on elementary invariants for Abelian groups and using a measure generated by a Frechet filter, we describe generic theories for two series of cyclic groups. Axioms of generic theories are given, complete theories are characterized in terms of elementary invariants, and canonical models of complete theories are constructed.
Keywords: generic theory with respect to measure, Frechet filter, finite Abelian group.
Received: 26.11.2014
English version:
Algebra and Logic, 2015, Volume 53, Issue 6, Pages 471–480
DOI: https://doi.org/10.1007/s10469-015-9309-x
Bibliographic databases:
Document Type: Article
UDC: 512.541+512.54.01
Language: Russian
Citation: A. A. Mishchenko, V. N. Remeslennikov, A. V. Treier, “Generic theories for series of finite Abelian groups”, Algebra Logika, 53:6 (2014), 722–734; Algebra and Logic, 53:6 (2015), 471–480
Citation in format AMSBIB
\Bibitem{MisRemTre14}
\by A.~A.~Mishchenko, V.~N.~Remeslennikov, A.~V.~Treier
\paper Generic theories for series of finite Abelian groups
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 722--734
\mathnet{http://mi.mathnet.ru/al663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408306}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 471--480
\crossref{https://doi.org/10.1007/s10469-015-9309-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350800200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924120351}
Linking options:
  • https://www.mathnet.ru/eng/al663
  • https://www.mathnet.ru/eng/al/v53/i6/p722
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :75
    References:58
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024