Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 6, Pages 704–709 (Mi al661)  

This article is cited in 1 scientific paper (total in 1 paper)

Separant of an arbitrary polynomial

Yu. L. Ershovab

a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
Full-text PDF (125 kB) Citations (1)
References:
Abstract: Let $f$ be a unitary polynomial over $F$. Previously, the concept of a separant of a polynomial $f$ was defined for the case where f has no multiple roots. The notion of a separant turned out to be very useful for generalizations of Hensel's lemma. We propose a generalization of this concept to the case where a polynomial may have multiple roots. This allows us to extend Hensel's lemma to this case as well.
Keywords: separant of polynomial, Hensel's lemma.
Received: 01.10.2014
English version:
Algebra and Logic, 2015, Volume 53, Issue 6, Pages 458–462
DOI: https://doi.org/10.1007/s10469-015-9307-z
Bibliographic databases:
Document Type: Article
UDC: 512.623.4
Language: Russian
Citation: Yu. L. Ershov, “Separant of an arbitrary polynomial”, Algebra Logika, 53:6 (2014), 704–709; Algebra and Logic, 53:6 (2015), 458–462
Citation in format AMSBIB
\Bibitem{Ers14}
\by Yu.~L.~Ershov
\paper Separant of an arbitrary polynomial
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 704--709
\mathnet{http://mi.mathnet.ru/al661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408304}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 458--462
\crossref{https://doi.org/10.1007/s10469-015-9307-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350800200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924143811}
Linking options:
  • https://www.mathnet.ru/eng/al661
  • https://www.mathnet.ru/eng/al/v53/i6/p704
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :108
    References:48
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024