Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 5, Pages 625–642 (Mi al654)  

This article is cited in 1 scientific paper (total in 1 paper)

Properties of $s\Sigma$-reducibility

A. I. Stukachevab

a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
Full-text PDF (237 kB) Citations (1)
References:
Abstract: We couch the definition of $s\Sigma$-reducibility on structures, describe some properties of $s\Sigma$-reducibility, and also exemplify explicitly how to use it. In particular, we consider natural expansions of structures such as Morleyization and Skolemization. Previously, a class of quasiregular structures was defined to be a class of fixed points of Morleyization with respect to $s\Sigma$-reducibility, extending the class of models of regular theories and the class of effectively model-complete structures. It was proved that an $\mathrm{HF}$-superstructure over a quasiregular structure is quasiresolvent and, consequently, has a universal $\Sigma$-function and possesses the reduction property. Here we show that an $\mathrm{HF}$-superstructure over a quasiregular structure has the $\Sigma$-uniformization property iff with respect to $s\Sigma$-reducibility this structure is a fixed point for some of its Skolemizations with an extra property, that of well-definededness. In this case an $\mathrm{HF}$-superstructure and a Moschovakis superstructure over a given structure are $s\Sigma$-equivalent.
Keywords: generalized computability, model theory, model completeness, decidability, uniformization property.
Received: 06.06.2013
Revised: 29.08.2014
English version:
Algebra and Logic, 2014, Volume 53, Issue 5, Pages 405–417
DOI: https://doi.org/10.1007/s10469-014-9300-y
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: A. I. Stukachev, “Properties of $s\Sigma$-reducibility”, Algebra Logika, 53:5 (2014), 625–642; Algebra and Logic, 53:5 (2014), 405–417
Citation in format AMSBIB
\Bibitem{Stu14}
\by A.~I.~Stukachev
\paper Properties of $s\Sigma$-reducibility
\jour Algebra Logika
\yr 2014
\vol 53
\issue 5
\pages 625--642
\mathnet{http://mi.mathnet.ru/al654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3328895}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 5
\pages 405--417
\crossref{https://doi.org/10.1007/s10469-014-9300-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346083800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925506579}
Linking options:
  • https://www.mathnet.ru/eng/al654
  • https://www.mathnet.ru/eng/al/v53/i5/p625
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :57
    References:55
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024