|
This article is cited in 9 scientific papers (total in 9 papers)
Groups whose element orders do not exceed 6
D. V. Lytkinaab, V. D. Mazurovca, A. S. Mamontovca, E. Jabarad a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Siberian State University of Telecommunications and Information Sciences, ul. Kirova 86, Novosibirsk, 630102, Russia
c Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
d Dipartimento di Filosofia e Beni Culturali, Università di Ca' Foscari, Dorsoduro 3484/d, I-30123 Venezia, Italy
Abstract:
It is proved that a periodic group whose element orders do not exceed 6 either is a locally finite or is group of exponent 5.
Keywords:
periodic group, locally finite group.
Received: 18.08.2014
Citation:
D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, E. Jabara, “Groups whose element orders do not exceed 6”, Algebra Logika, 53:5 (2014), 570–586; Algebra and Logic, 53:5 (2014), 365–376
Linking options:
https://www.mathnet.ru/eng/al651 https://www.mathnet.ru/eng/al/v53/i5/p570
|
Statistics & downloads: |
Abstract page: | 455 | Full-text PDF : | 132 | References: | 78 | First page: | 18 |
|