Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 4, Pages 466–504 (Mi al646)  

This article is cited in 6 scientific papers (total in 6 papers)

Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation

C. Herrmanna, M. V. Semenovabc

a Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstr. 7, Darmstadt, 64289, Germany
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Full-text PDF (358 kB) Citations (6)
References:
Abstract: We show that Berberian's $*$-regular extension of a finite $AW^*$-algebra admits a faithful representation, matching the involution with adjunction, in the $\mathbb C$-algebra of endomorphisms of a closed subspace of some ultrapower of a Hilbert space. It also turns out that this extension is a homomorphic image of a regular subalgebra of an ultraproduct of matrix $*$-algebras $\mathbb C^{n\times n}$.
Keywords: $AW^*$-algebra, finite Rickart $C^*$-algebra, ring of quotients, $*$-regular ring, projection ortholattice, ultraproduct.
Received: 28.07.2013
Revised: 14.08.2014
English version:
Algebra and Logic, 2014, Volume 53, Issue 4, Pages 298–322
DOI: https://doi.org/10.1007/s10469-014-9292-7
Bibliographic databases:
Document Type: Article
UDC: 512.55+512.57
Language: Russian
Citation: C. Herrmann, M. V. Semenova, “Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation”, Algebra Logika, 53:4 (2014), 466–504; Algebra and Logic, 53:4 (2014), 298–322
Citation in format AMSBIB
\Bibitem{HerSem14}
\by C.~Herrmann, M.~V.~Semenova
\paper Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation
\jour Algebra Logika
\yr 2014
\vol 53
\issue 4
\pages 466--504
\mathnet{http://mi.mathnet.ru/al646}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309850}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 4
\pages 298--322
\crossref{https://doi.org/10.1007/s10469-014-9292-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345319700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922073805}
Linking options:
  • https://www.mathnet.ru/eng/al646
  • https://www.mathnet.ru/eng/al/v53/i4/p466
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :68
    References:51
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024