Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 4, Pages 451–465 (Mi al645)  

Representation of some finite rings by matrices over commutative rings

A. Mekei, L. Oyuuntsetseg

The Institute of Mathematics, National University of Mongolia, Ulan Bator, Mongolia
References:
Abstract: We give a complete description of subdirectly irreducible finite associative rings with commuting nilpotent elements. Also it is proved that a finite ring the nilpotent elements of which commute is representable by matrices over a commutative ring.
Keywords: Galois ring, subdirectly irreducible ring, variety of associative rings, representation of finite rings by matrices over commutative rings.
Received: 17.05.2014
Revised: 10.06.2014
English version:
Algebra and Logic, 2014, Volume 53, Issue 4, Pages 287–297
DOI: https://doi.org/10.1007/s10469-014-9291-8
Bibliographic databases:
Document Type: Article
UDC: 512.552.4
Language: Russian
Citation: A. Mekei, L. Oyuuntsetseg, “Representation of some finite rings by matrices over commutative rings”, Algebra Logika, 53:4 (2014), 451–465; Algebra and Logic, 53:4 (2014), 287–297
Citation in format AMSBIB
\Bibitem{MekOyu14}
\by A.~Mekei, L.~Oyuuntsetseg
\paper Representation of some finite rings by matrices over commutative rings
\jour Algebra Logika
\yr 2014
\vol 53
\issue 4
\pages 451--465
\mathnet{http://mi.mathnet.ru/al645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309849}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 4
\pages 287--297
\crossref{https://doi.org/10.1007/s10469-014-9291-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345319700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922073934}
Linking options:
  • https://www.mathnet.ru/eng/al645
  • https://www.mathnet.ru/eng/al/v53/i4/p451
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :74
    References:51
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024