|
This article is cited in 7 scientific papers (total in 7 papers)
Families without minimal numberings
K. Sh. Abeshev, S. A. Badaev, M. Mustafa Al-Farabi Kazakh National University, Al-Farabi ave. 71, Alma-Ata, 050038, Kazakhstan
Abstract:
It is proved that for any nonzero computable ordinal and its arbitrary notation $a$, there exists $\Sigma_a^{-1}$-computable family without minimal computable numberings.
Keywords:
computable numbering, Ershov hierarchy, minimal numbering.
Received: 16.11.2013
Citation:
K. Sh. Abeshev, S. A. Badaev, M. Mustafa, “Families without minimal numberings”, Algebra Logika, 53:4 (2014), 427–450; Algebra and Logic, 53:4 (2014), 271–286
Linking options:
https://www.mathnet.ru/eng/al644 https://www.mathnet.ru/eng/al/v53/i4/p427
|
Statistics & downloads: |
Abstract page: | 277 | Full-text PDF : | 87 | References: | 52 | First page: | 11 |
|