Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 2, Pages 185–205 (Mi al630)  

Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$

M. N. Leontievaab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
References:
Abstract: We give a complete description of conditions of being strongly constructivizable for Boolean algebras of elementary characteristic $(\infty,0,0)$ in terms of being computable for a sequence of canonical Ershov–Tarski predicates on Boolean algebras.
Keywords: Boolean algebra, computable model, ideals of Boolean algebra.
Received: 29.11.2013
English version:
Algebra and Logic, 2014, Volume 53, Issue 2, Pages 119–132
DOI: https://doi.org/10.1007/s10469-014-9276-7
Bibliographic databases:
Document Type: Article
UDC: 510.5+510.6+512.563
Language: Russian
Citation: M. N. Leontieva, “Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$”, Algebra Logika, 53:2 (2014), 185–205; Algebra and Logic, 53:2 (2014), 119–132
Citation in format AMSBIB
\Bibitem{Leo14}
\by M.~N.~Leontieva
\paper Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$
\jour Algebra Logika
\yr 2014
\vol 53
\issue 2
\pages 185--205
\mathnet{http://mi.mathnet.ru/al630}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237389}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 2
\pages 119--132
\crossref{https://doi.org/10.1007/s10469-014-9276-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339821300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905061737}
Linking options:
  • https://www.mathnet.ru/eng/al630
  • https://www.mathnet.ru/eng/al/v53/i2/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :57
    References:65
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024