Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 2, Pages 184–196 (Mi al63)  

This article is cited in 3 scientific papers (total in 3 papers)

An Analog for the Frattini Factorization of Finite Groups

V. I. Zenkova, V. S. Monakhovb, D. O. Revinc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Francisk Skorina Gomel State University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (175 kB) Citations (3)
References:
Abstract: Using the classification of finite simple groups, we prove that if $H$ is an insoluble normal subgroup of a finite group $G$, then $H$ contains a maximal soluble subgroup $G$ such that $G=HN_G(S)$. Thereby Problem 14.62 in the “Kourovka Notebook” is given a positive solution. As a consequence, it is proved that in every finite group, there exists a subgroup that is simultaneously a ${\mathfrak S}$-projector and a ${\mathfrak S}$-injector in the class, ${\mathfrak S}$ , of all soluble groups.
Received: 22.04.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 2, Pages 102–108
DOI: https://doi.org/10.1023/B:ALLO.0000020847.92969.e4
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. I. Zenkov, V. S. Monakhov, D. O. Revin, “An Analog for the Frattini Factorization of Finite Groups”, Algebra Logika, 43:2 (2004), 184–196; Algebra and Logic, 43:2 (2004), 102–108
Citation in format AMSBIB
\Bibitem{ZenMonRev04}
\by V.~I.~Zenkov, V.~S.~Monakhov, D.~O.~Revin
\paper An Analog for the Frattini Factorization of Finite Groups
\jour Algebra Logika
\yr 2004
\vol 43
\issue 2
\pages 184--196
\mathnet{http://mi.mathnet.ru/al63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2072570}
\zmath{https://zbmath.org/?q=an:1079.20035}
\elib{https://elibrary.ru/item.asp?id=9127542}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 2
\pages 102--108
\crossref{https://doi.org/10.1023/B:ALLO.0000020847.92969.e4}
\elib{https://elibrary.ru/item.asp?id=5999813}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349098388}
Linking options:
  • https://www.mathnet.ru/eng/al63
  • https://www.mathnet.ru/eng/al/v43/i2/p184
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :121
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024