Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 2, Pages 162–177 (Mi al628)  

This article is cited in 3 scientific papers (total in 3 papers)

Rigid metabelian pro-$p$-groups

S. G. Afanas'evaa, N. S. Romanovskiiab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Full-text PDF (196 kB) Citations (3)
References:
Abstract: A metabelian pro-$p$-group $G$ is rigid if it has a normal series of the form
$$ G=G_1\ge G_2\ge G_3=1 $$
such that the factor group $A=G/G_2$ is torsion-free Abelian and $C=G_2$ is torsion-free as a $\mathbb Z_pA$-module. If $G$ is a non-Abelian group, then the subgroup $G_2$, as well as the given series, is uniquely defined by the properties mentioned. An Abelian pro-$p$-group is rigid if it is torsion-free, and as $G_2$ we can take either the trivial subgroup or the entire group. We prove that all rigid $2$-step solvable pro-$p$-groups are mutually universally equivalent.
Rigid metabelian pro-$p$-groups can be treated as $2$-graded groups with possible gradings $(1,1)$, $(1,0)$, and $(0,1)$. If a group is $2$-step solvable, then its grading is $(1,1)$. For an Abelian group, there are two options: namely, grading $(1,0)$, if $G_2=1$, and grading $(0,1)$ if $G_2=G$. A morphism between $2$-graded rigid pro-$p$-groups is a homomorphism $\varphi\colon G\to H$ such that $G_i\varphi\le H_i$. It is shown that in the category of $2$-graded rigid pro-$p$-groups, a coproduct operation exists, and we establish its properties.
Keywords: rigid metabelian pro-$p$-group, $2$-graded group.
Received: 13.12.2013
English version:
Algebra and Logic, 2014, Volume 53, Issue 2, Pages 102–113
DOI: https://doi.org/10.1007/s10469-014-9274-9
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: S. G. Afanas'eva, N. S. Romanovskii, “Rigid metabelian pro-$p$-groups”, Algebra Logika, 53:2 (2014), 162–177; Algebra and Logic, 53:2 (2014), 102–113
Citation in format AMSBIB
\Bibitem{AfaRom14}
\by S.~G.~Afanas'eva, N.~S.~Romanovskii
\paper Rigid metabelian pro-$p$-groups
\jour Algebra Logika
\yr 2014
\vol 53
\issue 2
\pages 162--177
\mathnet{http://mi.mathnet.ru/al628}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237387}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 2
\pages 102--113
\crossref{https://doi.org/10.1007/s10469-014-9274-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339821300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905040338}
Linking options:
  • https://www.mathnet.ru/eng/al628
  • https://www.mathnet.ru/eng/al/v53/i2/p162
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :76
    References:54
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024