Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 1, Pages 109–129 (Mi al625)  

This article is cited in 4 scientific papers (total in 4 papers)

Unifying solutions to systems of equations in finite simple semigroups

A. N. Shevlyakov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, ul. Pevtsova 13, Omsk, 644099, Russia
Full-text PDF (216 kB) Citations (4)
References:
Abstract: A semigroup $C$ is called an equational domain if every finite union of algebraic sets over $C$ is again an algebraic set. We study a class of finite simple semigroups and find necessary and sufficient conditions for such semigroups to be equational domains.
Keywords: finite simple semigroup, equational domain, algebraic set.
Received: 21.10.2013
Revised: 15.01.2014
English version:
Algebra and Logic, 2014, Volume 53, Issue 1, Pages 70–83
DOI: https://doi.org/10.1007/s10469-014-9271-z
Bibliographic databases:
Document Type: Article
UDC: 512.71+512.577+512.53
Language: Russian
Citation: A. N. Shevlyakov, “Unifying solutions to systems of equations in finite simple semigroups”, Algebra Logika, 53:1 (2014), 109–129; Algebra and Logic, 53:1 (2014), 70–83
Citation in format AMSBIB
\Bibitem{She14}
\by A.~N.~Shevlyakov
\paper Unifying solutions to systems of equations in finite simple semigroups
\jour Algebra Logika
\yr 2014
\vol 53
\issue 1
\pages 109--129
\mathnet{http://mi.mathnet.ru/al625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237624}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 1
\pages 70--83
\crossref{https://doi.org/10.1007/s10469-014-9271-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337279400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902316107}
Linking options:
  • https://www.mathnet.ru/eng/al625
  • https://www.mathnet.ru/eng/al/v53/i1/p109
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024