Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2014, Volume 53, Number 1, Pages 60–108 (Mi al624)  

This article is cited in 14 scientific papers (total in 14 papers)

Computability-theoretic properties of injection structures

D. Cenzera, V. Harizanovb, J. B. Remmelc

a Dep. Math., Univ. Florida, Gainesville, FL 32611 USA
b Dep. Math., George Washington Univ., Washington, DC 20052 USA
c Dep. Math., Univ. California-San Diego, La Jolla, CA 92093 USA
References:
Abstract: We study computability-theoretic properties of computable injection structures and the complexity of isomorphisms between these structures. It is proved that a computable injection structure is computably categorical iff it has finitely many infinite orbits. Again, a computable injection structure is $\Delta^0_2$-categorical iff it has finitely many orbits of type $\omega$ or finitely many orbits of type $Z$. Furthermore, every computably categorical injection structure is relatively computably categorical, and every $\Delta^0_2$-categorical injection structure is $\Delta^0_2$-categorical. Analogs of these results are investigated for $\Sigma^0_1$-, $\Pi^0_1$-, and $n$-c.e. injection structures.
We study the complexity of the set of elements with orbits of a given type in computable injection structures. For example, it is proved that for every c.e. Turing degree $\mathbf b$, there is a computable injection structure $\mathcal A$ in which the set of all elements with finite orbits has degree $\mathbf b$, and for every $\Sigma^0_2$ Turing degree $\mathbf c$, there is a computable injection structure $\mathcal B$ in which the set of elements with orbits of type $\omega$ has degree $\mathbf c$. We also have various index set results for infinite computable injection structures. For example, the index set of infinite computably categorical injection structures is a $\Sigma^0_3$-complete set, and the index set of infinite $\Delta^0_2$-categorical injection structures is a $\Sigma^0_4$-complete set.
We explore the connection between the complexity of the character and the first-order theory of a computable injection structure. It is shown that for an injection structure with a computable character, there is a decidable structure isomorphic to it. However, there are computably categorical injection structures with undecidable theories.
Keywords: computability theory, injections, permutations, effective categoricity, computable model theory.
Received: 27.11.2012
Revised: 27.07.2013
English version:
Algebra and Logic, 2014, Volume 53, Issue 1, Pages 39–69
DOI: https://doi.org/10.1007/s10469-014-9270-0
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: D. Cenzer, V. Harizanov, J. B. Remmel, “Computability-theoretic properties of injection structures”, Algebra Logika, 53:1 (2014), 60–108; Algebra and Logic, 53:1 (2014), 39–69
Citation in format AMSBIB
\Bibitem{CenHarRem14}
\by D.~Cenzer, V.~Harizanov, J.~B.~Remmel
\paper Computability-theoretic properties of injection structures
\jour Algebra Logika
\yr 2014
\vol 53
\issue 1
\pages 60--108
\mathnet{http://mi.mathnet.ru/al624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237623}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 1
\pages 39--69
\crossref{https://doi.org/10.1007/s10469-014-9270-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337279400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902345752}
Linking options:
  • https://www.mathnet.ru/eng/al624
  • https://www.mathnet.ru/eng/al/v53/i1/p60
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :83
    References:48
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024