Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 5, Pages 582–588 (Mi al604)  

This article is cited in 2 scientific papers (total in 2 papers)

Groups acting on groups

M. Deaconescua, G. L. Wallsb

a Dep. Math., Kuwait Univ., P. O. Box 5969, Safat 13060, Kuwait
b Dep. Math., Southeastern Louisiana Univ., Hammond, LA 70403, USA
Full-text PDF (124 kB) Citations (2)
References:
Abstract: Combinatorial methods are used to give a characterization of finite groups $G$ with $\mathrm{Aut}(G)$ Abelian and to show that if $G$ is a finite group and $\alpha$ is an automorphism of $G$, then the number of fixed points of $\alpha$ in $G$ is a multiple of the number of fixed points of $\alpha$ in $G/Z(G)$.
Keywords: finite groups, automorphisms, fixed points, orbits, Abelian automorphism groups.
Received: 21.07.2013
English version:
Algebra and Logic, 2013, Volume 52, Issue 5, Pages 387–391
DOI: https://doi.org/10.1007/s10469-013-9250-9
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. Deaconescu, G. L. Walls, “Groups acting on groups”, Algebra Logika, 52:5 (2013), 582–588; Algebra and Logic, 52:5 (2013), 387–391
Citation in format AMSBIB
\Bibitem{DeaWal13}
\by M.~Deaconescu, G.~L.~Walls
\paper Groups acting on groups
\jour Algebra Logika
\yr 2013
\vol 52
\issue 5
\pages 582--588
\mathnet{http://mi.mathnet.ru/al604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184661}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 5
\pages 387--391
\crossref{https://doi.org/10.1007/s10469-013-9250-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328340100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889020506}
Linking options:
  • https://www.mathnet.ru/eng/al604
  • https://www.mathnet.ru/eng/al/v52/i5/p582
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :64
    References:53
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024