Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 4, Pages 502–525 (Mi al599)  

This article is cited in 12 scientific papers (total in 12 papers)

Verbally and existentially closed subgroups of free nilpotent groups

V. A. Roman'kovab, N. G. Khisamievc

a Dostoevskii Omsk State University, pr. Mira 55-A, Omsk, 644077, Russia
b Omsk State Technical University, pr. Mira 11, Omsk, 644050, Russia
c Serikbaev East Kazakhstan State Technical University, ul. Serikbaeva 19, Ust-Kamenogorsk, 070010, Kazakhstan
References:
Abstract: Let $\mathcal N_c$ be the variety of all nilpotent groups of class at most $c$ and $N_{r,c}$ a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $H$ of $N_{r,c}$ ($r,c\ge1$) is verbally closed iff $H$ is a free factor (or, equivalently, an algebraically closed subgroup, a retract) of the group $N_{r,c}$.
In addition, for $c\ge4$ and $m<c-1$, every free factor $N_{m,c}$ of the group $N_{c-1,c}$ in the variety $\mathcal N_c$ is not existentially closed in the group $N_{m+i,c}$ for $i=1,2,\dots$. It is stated that for $r\ge3$ and $2\le c\le3$ every free factor $N_{m,c}$, $2\le m\le r$, in $\mathcal N_c$ is existentially closed in the group $N_{r,c}$.
Keywords: verbally closed subgroup, existentially closed subgroup, retract, free nilpotent group.
Received: 01.03.2013
Revised: 07.06.2013
English version:
Algebra and Logic, 2013, Volume 52, Issue 4, Pages 336–351
DOI: https://doi.org/10.1007/s10469-013-9245-6
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. A. Roman'kov, N. G. Khisamiev, “Verbally and existentially closed subgroups of free nilpotent groups”, Algebra Logika, 52:4 (2013), 502–525; Algebra and Logic, 52:4 (2013), 336–351
Citation in format AMSBIB
\Bibitem{RomKhi13}
\by V.~A.~Roman'kov, N.~G.~Khisamiev
\paper Verbally and existentially closed subgroups of free nilpotent groups
\jour Algebra Logika
\yr 2013
\vol 52
\issue 4
\pages 502--525
\mathnet{http://mi.mathnet.ru/al599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154365}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 4
\pages 336--351
\crossref{https://doi.org/10.1007/s10469-013-9245-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326597900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886179305}
Linking options:
  • https://www.mathnet.ru/eng/al599
  • https://www.mathnet.ru/eng/al/v52/i4/p502
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :98
    References:54
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024