Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 3, Pages 370–385 (Mi al592)  

This article is cited in 7 scientific papers (total in 7 papers)

The group $K_0$ of a generalized matrix ring

P. A. Krylov

Tomsk State University, pr. Lenina 36, Tomsk, 634050, Russia
Full-text PDF (211 kB) Citations (7)
References:
Abstract: We deal with a group $K_0$ of some category of modules over a generalized matrix ring (of order 2). The results obtained are applied to compute the group $K_0$ for the generalized matrix ring itself.
Keywords: group $K_0$, generalized matrix ring.
Received: 01.02.2013
Revised: 29.03.2013
English version:
Algebra and Logic, 2013, Volume 52, Issue 3, Pages 250–261
DOI: https://doi.org/10.1007/s10469-013-9238-5
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: P. A. Krylov, “The group $K_0$ of a generalized matrix ring”, Algebra Logika, 52:3 (2013), 370–385; Algebra and Logic, 52:3 (2013), 250–261
Citation in format AMSBIB
\Bibitem{Kry13}
\by P.~A.~Krylov
\paper The group $K_0$ of a~generalized matrix ring
\jour Algebra Logika
\yr 2013
\vol 52
\issue 3
\pages 370--385
\mathnet{http://mi.mathnet.ru/al592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137130}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 3
\pages 250--261
\crossref{https://doi.org/10.1007/s10469-013-9238-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325007400006}
Linking options:
  • https://www.mathnet.ru/eng/al592
  • https://www.mathnet.ru/eng/al/v52/i3/p370
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :81
    References:66
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024