Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 2, Pages 203–218 (Mi al582)  

This article is cited in 2 scientific papers (total in 2 papers)

Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs

Yu. N. Mal'tsev, A. S. Kuz'mina

Altai State Pedagogical Academy, Barnaul, Russia
Full-text PDF (208 kB) Citations (2)
References:
Abstract: The zero-divisor graph of an associative ring $R$ is a graph such that its vertices are all nonzero (one-sided and two-sided) zero-divisors, and moreover, two distinct vertices $x$ and $y$ are joined by an edge iff $xy=0$ or $yx=0$. We give a complete description of varieties of associative rings in which all finite rings have Hamiltonian zero-divisor graphs. Also finite decomposable rings with unity having Hamiltonian zero-divisor graphs are characterized.
Keywords: zero-divisor graph, Hamiltonian graph, variety of associative rings, finite ring.
Received: 09.01.2013
Revised: 22.02.2013
English version:
Algebra and Logic, 2013, Volume 52, Issue 2, Pages 137–146
DOI: https://doi.org/10.1007/s10469-013-9228-7
Bibliographic databases:
Document Type: Article
UDC: 512.552.4
Language: Russian
Citation: Yu. N. Mal'tsev, A. S. Kuz'mina, “Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs”, Algebra Logika, 52:2 (2013), 203–218; Algebra and Logic, 52:2 (2013), 137–146
Citation in format AMSBIB
\Bibitem{MalKuz13}
\by Yu.~N.~Mal'tsev, A.~S.~Kuz'mina
\paper Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
\jour Algebra Logika
\yr 2013
\vol 52
\issue 2
\pages 203--218
\mathnet{http://mi.mathnet.ru/al582}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3134783}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 2
\pages 137--146
\crossref{https://doi.org/10.1007/s10469-013-9228-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321627100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884981995}
Linking options:
  • https://www.mathnet.ru/eng/al582
  • https://www.mathnet.ru/eng/al/v52/i2/p203
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024